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Abstract: In this analytical investigation, we explore various solutions for a generalized and extended
Boussinesq (eBO) equation in (2+1)-dimensions. It applies a problem-solving approach known as the gener-
alized exponential rational function technique, which first transforms the equation into a simplified ordinary
differential equation under a wave transformation. It considers the trial function as a rational function
involving exponential functions for the simplified equation. With these considerations, the desired analytic
solutions, which include solitons, breathers, kink-solitons, and periodic background waves, are explored for
the investigated equation. Under arbitrary choices for the constants in the rational function, it analyzes
different families with several computed cases to obtain the solutions for a rational function, which provides
the general solution of the studied eBO equation using back substitution. We graphically explore the ob-
tained solutions in the form of different solitons, breathers, and periodic waves, with arbitrary choices for
the involved constant coefficients. It discusses the work’s significant importance and the dynamic behavior
of the obtained solution. The investigated eBO equation is important in nonlinear sciences and has many
physical applications. It provides insights into the multi-dimensional waves and solitons interactions in ap-
plied mathematics and physics and many other fields such as optics, fluid dynamics, geophysics, and plasma
physics.
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1 Introduction

Nonlinear partial differential equations (NLPDEs) are used as a tool to describe complex physical phe-
nomena having effect of nonlinearity and dispersion. KdV and schrödinger equations are the fundamental
NLPDEs to study the waves in shallow and deep water respectively. Both equation generates the solitary
wave structures that balance the nonlinearity and dispersion for the studied PDEs. Solitary waves are
imortant to study as they preserve their shape and size throughout the wave propagation. These waves
are the funcdamental nonlinear wave solutions that preserve the shape even after the collision to the other
waves. Obtaining the analytic or exact solutions for such PDEs are important to gain the knowledge of
the behaviors of the waves and their interactions in several fields such as fluid dynamics, oceanography,
optics, plasma physics, and other nonlinear sciences. Due to the lack of general solutions of NLPDEs,
there are different approaches to obtain the analytic and exact solutions including including the simplified
Hirota’s technique [1, 2], Darboux transformation [3, 4], Bäcklund transformation [5, 6], Symbolic bilinear
technique [7], Bilinear Neural Network Method [8, 9], Direct symbolic approach [10–14], Hirota’s bilinear
approach [15–18], and other methodologies [19].

This research investigates the (2+1)-dimensional extended Boussinesq (eBO) equation [20] as

uxt + α(uxxxx + 6uxuxx) + βutt + auxx + buxy = 0, (1)

having u as the wave/amplitude function of independent variables x, y and t with constant coefficients
α, β, a, and b, related to the model’s physical parameters that describe the propagation of nonlinear waves
in higher-dimensional system. Wazwaz et al. (2024) [20] proposed and analyzed this equation, which is a
sophisticated generalization of the classic shallow-water Boussinesq model. It captures richer dynamics in
(3+1)-dimensional fluid environments. This extended version of the Boussinesq equation incorporates addi-
tional higher-order nonlinear and dispersive terms. The additional terms enable it to describe complex wave
behaviors such as solitons, shock waves, periodic structures, and localized lumps. Through Painlevé analysis,
the authors demonstrated that this model is Painlevé-integrable. Moreover, Hirota bilinear approach was
applied to obtain analytic solutions, including multi-soliton, kink, periodic, and lump (localized) structures.
Physically, this means that the extended Boussinesq equation can model the interaction of nonlinear wave
forms on shallow water surfaces in multiple dimensions. The model’s ability to produce both coherent soli-
ton trains and complex localized features makes it especially valuable. It studies phenomena ranging from
internal waves in stratified fluids to nonlinear pulse propagation in optical or plasma systems.
The classic shallow-water Boussinesq model is an introductory equation in fluid dynamics that describes the
behavior of long surface waves in shallow water under the influence of gravity. Mathematically, the classic
Boussinesq equation [21] takes a form such as

utt − c2uxx − a(u2)xx + buxxxx = 0, (2)

where u(x, t) is the surface elevation, c is the wave speed in linear theory, and the terms involving a and b
represent nonlinear and dispersive effects, respectively. It captures the delicate balance between nonlinearity
and dispersion, which tends to steepen wavefronts and spread out waves, respectively. It makes the equation
suitable for modeling weakly nonlinear, weakly dispersive waves that can be observed in coastal and near-
shore environments. A pivotal advantage of the Boussinesq model is its ability to simulate bidirectional wave
propagation, which is not possible in simpler models, such as the Korteweg–de Vries (KdV) equation that
describes waves traveling in one direction. Due to this reason, the Boussinesq model has been widely applied
in various fields such as tsunami modeling, wave-current interactions, and coastal engineering. However, the
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classical form of the equation becomes less accurate when applied to strongly nonlinear or multi-dimensional
scenarios.

The manuscript is structured as: The following section 2 provides an overview of the applied
generalized exponential rational function technique, including its steps. These steps include the formation
of ordinary differential equations through wave transformation. The third section 3 obtains the analytic
solution for the investigated eBO equation for different families, allowing for an arbitrary choice of real
parameters. It also displays the dynamics of the obtained solutions with various choices of constants.
In section 4, we analyze the results with analytic observations and discuss the several forms of the wave
structures. Ultimately, we conclude our research work.

2 Overview of problem-solving technique: GERFM

To find the analytic solutions of the (2+1)-dimensional generalized extended Boussinesq (eBO) equation, we
utilize a well known generalized exponential rational function method (GERFM) [22–24]. This method can
be explored generally into steps as

• Let us consider a (2+1)-dimensional nonlinear partial differential equations (PDE)

P (υ, υx, υy, υt, υxx, υxt, υyt, υtt · · · ) = 0, (3)

and apply the traveling wave transformation υ(x, y, t) = G(ϕ) where ϕ = sx + ky + jt + λ, then the
studied Nonlinear PDE (3) converts into an ordinary differential equation (ODE)

Q(G,G
′
, G”, G

′′′
. . .) = 0. (4)

• We suppose the solution of the equation (4) as

G(ϕ) = J0 +
N∑
i=1

JiM(ϕ)i +
N∑
i=1

KiM(ϕ)−i (5)

where N is the balancing constant obtained by using homogeneous balance principle, and M(ϕ) is a
rational function

M(ϕ) =
ω1e

η1ϕ + ω2e
η2ϕ

ω3eη3ϕ + ω4eη4ϕ
, (6)

with arbitrary constants ωi, ηi, (1 ≤ i ≤ 4) and constant coefficients J0, Ji and Ki(1 ≤ i ≤ N).

• On substituting the equation (5) with (6) into the equation (4), collecting all the possible powers of
{eϕ}, and equating their coefficients Cj for the integer j to zero, forms an algebraic system Cj = 0.

• At the end, after solving the system of equations, we will substitute the obtained values into the
equations (5) and (6) that establishes the analytic solutions of the ODE (4). Further doing back
substitution, we create the analytic solution for the investigated eBO equation (1).

3 Analytic solutions of eBO equation

The study in the work aims to find out the different types of analytic solutions for the studied nonlinear
eBO equation (1) through various forms as soliton, kink-type soliton, lump-chain, breather and periodic
background waves. Now utilizing the GERFM to the studied equation as per discussed in above section, we
have following process as
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Considering the wave transformation

u(x, y, t) = G(ϕ); ϕ = sx+ ky + jt+ λ, (7)

where s, k and λ are arbitrary constants. On substituting the equationo (7) into (1), we get an transformed
equation in the form of an ordinary differential equation (ODE) as

jsG′′[ϕ] + bksG′′[ϕ] + as2G′′[ϕ] + j2βG′′[ϕ] + α(6s3G′[ϕ]G′′[ϕ] + s4G(4)[ϕ]) = 0. (8)

With the help of homogeneous balancing principle, we balance the terms G(4) and G′G′′ of the equation (8),
we deduce N +4 = (N +1)+ (N +2), which implies that N = 1. Hence, from equation (5), we get the trial
solution as

G(ϕ) = J0 + J1M(ϕ) +
K1

M(ϕ)
, (9)

where M(ϕ) is rational function as in equation (6). Next, we substitute the equation (9) into (8) and follow
the steps of the GERFM. To obtain the different solutions, we consider different families for different values
of the constants in the rational function (6).

Family 1: For [ω1, ω2, ω3, ω4] = [−6, 7, 1, 1] and [η1, η2, η3, η4] = [1, 0, 1, 0], then the equation (6) becomes

M(ϕ) =
7− 6eϕ

1 + eϕ
. (10)

On substituting equation (10) into (9), we get

G(ϕ) =
K1(1 + eϕ)

7− 6eϕ
+

J1(7− 6eϕ)

1 + eϕ
+ J0 (11)

On putting the equation (11) with (10) into the equation (8), and collecting all the possible powers of
Yj = {eϕ}j for some integer j, forms an algebraic system Yj = 0 for all j. On solving the obtained system
we get values as
Case 1.1:

J0 ̸= 0, K1 = −84s

13
, J1 = 0, k =

−js− as2 − s4α− j2β

bs
.

Substituting the values of the above constants into equation (11), we get a solution for (8) as

G(ϕ) = −84(1 + eϕ)s

13(7− 6eϕ)
+ J0

Consequently, an analytic solution of (1) is obtained as

u(x, y, t) = J0 −
84(1 + ejt+sx+ky+λ)s

13(7− 6ejt+sx+ky+λ)
(12)

Case 1.2:

J0 ̸= 0, J1 = −2s

13
, K1 = 0, k =

−js− as2 − s4α− j2β

bs
.

Substitute the values of the above constants into equation (11), then equation (8) gives:

G(ϕ) = −2(7− 6eϕ)s

13(1 + eϕ)
+ J0
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Consequently, an exact soliton solution of (1) is obtained, as follows:

u(x, y, t) = J0 −
2(7− 6ejt+sx+ky+λ)s

13(1 + ejt+sx+ky+λ)
(13)

Case 1.3:

J0 ̸= 0, K1 =
−84s

13
, J1 = 0, j =

−s+
√

s2 − 4bksβ − 4as2β − 4s4αβ

2β
.

Substitute the values of the above constants into equation (11), then equation (8) gives:

G(ϕ) = −84(1 + eϕ)s

13(7− 6eϕ)
+ J0.

Consequently, an exact soliton solution of (1) is obtained, as follows:

u(x, y, t) = J0 −
84(1 + ejt+sx+ky+λ)s

13(7− 6ejt+sx+ky+λ)
(14)

Case 1.4:

J0 ̸= 0, K1 =
−84s

13
, J1 = 0, j =

−s−
√

s2 − 4bksβ − 4as2β − 4s4αβ

2β
.

Substitute the values of the above constants into equation (11), then equation (8) gives:

G(ϕ) = −84(1 + eϕ)s

13(7− 6eϕ)
+ J0.

Consequently, an exact soliton solution of (1) is obtained, as follows:

u(x, y, t) = J0 −
84(1 + ejt+sx+ky+λ)s

13(7− 6ejt+sx+ky+λ)
(15)

Family 2: For [ω1, ω2, ω3, ω4] = [−1,−1, 1,−1] and [η1, η2, η3, η4] = [1, 1, 1, 0], then equation (6) becomes,

M(ϕ) = − 2eϕ

−1 + eϕ
(16)

Next, we substitute equation (16) into (9) and we get:

G(ϕ) = −1

2
e−ϕ(−1 + eϕ)K1 −

2eϕJ1
−1 + eϕ

+ J0 (17)

Case 2.1:

J0 ̸= 0, J1 = −s, K1 = 0, j =
−s−

√
s2 − 4bksβ − 4as2β − 4s4αβ

2β
.

Substitute the values of the above constants into equation (17), then equation (8) gives:

G(ϕ) =
2eϕs

−1 + eϕ
+ J0.

Consequently, an exact soliton solution of (1) is obtained, as follows:

u(x, y, t) = J0 +
2ejt+sx+ky+λs

−1 + ejt+sx+ky+λ
(18)
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Figure 1: Graphics for the solutions (12), (13), and (15) as in (a) (b) and (c) respectively, with their 2D
plots in (d), (e), and (f), having parameters : (a) t = 0, j = 1, s = −5, k = 5, λ = .1, J0 = 1; (b) t = 0,
j = 1, s = 2, k = 2, λ = 1.1, J0 = 1; (c) t = 0, j = 1, s = −1, k = −1, λ = −7, J0 = 1.

Case 2.2:

J0 ̸= 0, J1 = −s, K1 = 0, j =
−s+

√
s2 − 4bksβ − 4as2β − 4s4αβ

2β

. Substitute the values of the above constants into equation (17), then equation (8) gives:

G(ϕ) =
2eϕs

−1 + eϕ
+ J0.

Consequently, an exact soliton solution of (1) is obtained, as follows:

u(x, y, t) = J0 +
2ejt+sx+ky+λs

−1 + ejt+sx+ky+λ
(19)

Case 2.3:

J0 ̸= 0, J1 = −s, K1 = 0, k =
−js− as2 − s4α− j2β

b s
.

Substitute the values of the above constants into equation (17), then equation (8) gives:

G(ϕ) =
2eϕs

−1 + eϕ
+ J0.

Consequently, an exact soliton solution of (1) is obtained, as follows:

u(x, y, t) = J0 +
2ejt+sx+ky+λs

−1 + ejt+sx+ky+λ
(20)
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Figure 2: Graphics for the solutions (18), (19), and (20) as in (a) (b) and (c) respectively, with their 2D
plots in (d), (e), and (f), having parameters : (a) t = 1, j = 1, s = −.1, k = −.8, λ = .1, J0 = 1; ; (b) t = .8,
j = 2, s = .02, k = 1.2, λ = 2, J0 = 1; ; (c) t = 1, j = 3, s = 4, k = 4, λ = 2.3, J0 = 3.

Family 3: For [ω1, ω2, ω3, ω4] = [2, 2, 2,−2] and [η1, η2, η3, η4] = [−2,−2,−2, 2], then the equation (6)
becomes,

M(ϕ) =
4e−2ϕ

2e−2ϕ − 2e2ϕ
(21)

Next, we substitute equation (21) into (9) and we get:

G(ϕ) =
1

4
e2ϕ(2e−2ϕ − 2e2ϕ)K1 +

4e−2ϕ

2e−2ϕ − 2e2ϕ
J1 + J0 (22)

Case 3.1:

J0 ̸= 0, J1 = −4s, K1 = 0, β = −s(j + bk + as+ 16s3α)

j2
.

Substitute the values of the above constants into equation (22), then equation (8) gives:

G(ϕ) = − 16e−2ϕs

2e−2ϕ − 2e2ϕ
+ J0

Consequently, an exact soliton solution of (1) is obtained, as follows:

u(x, y, t) = J0 −
16e−2(jt+sx+ky+λ)s

2e−2(jt+sx+ky+λ) − 2e2(jt+sx+ky+λ)
(23)

Case 3.2:

J0 ̸= 0, J1 = −4s, K1 = 0, α =
−js− bks− as2 − j2β

16s4
.
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Substitute the values of the above constants into equation (22), then equation (8) gives:

G(ϕ) = − 16e−2ϕs

2e−2ϕ − 2e2ϕ
+ J0

Consequently, an exact soliton solution of (1) is obtained, as follows:

u(x, y, t) = J0 −
16e−2(jt+sx+ky+λ)s

2e−2(jt+sx+ky+λ) − 2e2(jt+sx+ky+λ)
(24)
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Figure 3: Graphics for the solutions (23), and (24) as in (a) and (b) respectively, with their 2D plots in (c)
and (d), having parameters : (a) t = 0, j = 1, s = 4, k = 4, λ = 5, J0 = 1; ; (b) t = 0, j = 1, s = 4, k = 3,
λ = 4, J0 = 2.

Family 4: For [ω1, ω2, ω3, ω4] = [i,−i,−i, 1] and [η1, η2, η3, η4] = [−i, i,−i, i], then equation (6) becomes,

M(ϕ) =
ie−iϕ − ieiϕ

−ie−iϕ + eiϕ
(25)

Next, we substitute equation (25) into (9) and we get:

G(ϕ) =
(−ie−iϕ + eiϕ)K1

ie−iϕ − ieiϕ
+

(ie−iϕ − ieiϕ)J1
−ie−iϕ + eiϕ

+ J0 (26)

Case 4.1:

J0 ̸= 0, K1 = (2 + 2i)s, J1 = 0, j =
−s−

√
s2 − 4bksβ − 4as2β + 16s4αβ

2β
.

Substitute the values of the above constants into equation (26), then equation (8) gives:

G(ϕ) =
(2 + 2i)(−ie−iϕ + eiϕ)s

ie−iϕ − ieiϕ
+ J0

2025 @ Transitus Publishing 21 V.P. Singh, et. al



Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 14-26, (2025)

Consequently, an exact soliton solution of (1) is obtained, as follows:

u(x, y, t) =
(2 + 2i)(−ie−i(jt+sx+ky+λ) + ei(jt+sx+ky+λ))s

ie−i(jt+sx+ky+λ) − iei(jt+sx+ky+λ)
+ J0 (27)

Case 4.2:

J0 ̸= 0, J1 = (−2 + 2i)s, K1 = 0, j =
−s−

√
s2 − 4bksβ − 4as2β + 16s4αβ

2β
.

Substitute the values of the above constants into equation (26), then equation (8) gives:

G(ϕ) = −(2− 2i)(ie−iϕ − ieiϕ)s

−ie−iϕ + eiϕ
+ J0

Consequently, an exact soliton solution of (1) is obtained, as follows:

u(x, y, t) = −(2− 2i)(ie−i(jt+sx+ky+λ) − iei(jt+sx+ky+λ))s

−ie−i(jt+sx+ky+λ) + ei(jt+sx+ky+λ)
+ J0 (28)

Case 4.3:

J0 ̸= 0, J1 = 0, K1 = (2 + 2i)s, k =
−js− as2 + 4s4α− j2β

b s
.

Substitute the values of the above constants into equation (26), then equation (8) gives:

G(ϕ) =
(2 + 2i)(−ie−iϕ + eiϕ)s

ie−iϕ − ieiϕ
+ J0

Consequently, an exact soliton solution of (1) is obtained, as follows:

u(x, y, t) =
(2 + 2i)(−ie−i(jt+sx+ky+λ) + ei(jt+sx+ky+λ))s

ie−i(jt+sx+ky+λ) − iei(jt+sx+ky+λ)
+ J0 (29)

Case 4.4:

J0 ̸= 0, J1 = (−2 + 2i)s, K1 = 0, k =
−js− as2 + 4s4α− j2β

b s
.

Substitute the values of the above constants into equation (26), then equation (8) gives:

G(ϕ) = −(2− 2i)(ie−iϕ − ieiϕ)s

−ie−iϕ + eiϕ
+ J0

Consequently, an exact soliton solution of (1) is obtained, as

u(x, y, t) = −(2− 2i)(ie−i(jt+sx+ky+λ) − iei(jt+sx+ky+λ))s

−ie−i(jt+sx+ky+λ) + ei(jt+sx+ky+λ)
+ J0 (30)

4 Results and analysis

This work analyzed the different analytical solutions by considering the different famalies for the trial
function in the utilized GERF method. This approach consider the trial function as a rational functions
with arbitrary parameters. For different values of arbitrary parameters, we get the different trail functions
and hence different analytical solutions. The dynamical analysis of these obtained solutions are analyzed
with the symbolic software Mathematica, for appropriate choices of the arbitrary parameters. The two-
dimentional graphics are plotted for different time t values.
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Figure 4: Graphics for the solutions (27), (28), and (30) as in (a) (b) and (c) respectively, with their 2D
plots in (d), (e), and (f), having parameters : (a) t = 1, j = −.1, s = 10, k = 5, λ = 9, J0 = 1; (b) t = 0,
j = 1, s = 0.5, k = .001, λ = 9, J0 = 1; (c) t = 0, j = 1, s = 5, k = 3, λ = 1, J0 = 1.

The startiing choices of arbitrary parameters in trail function gives the opportunities to go with the different
analytical solutions that showcase the different wave solutions such as solitons, kinks, peridoic soliton,
perodic background waves and other wave structures. The studied solutions represents the different type of
wave structures depending on the arbitrary choice of parameters and show the waves behavior due to the
nonlinearity and dispersion of the investigated equation.
The analysis for the drawn figures is followed as

- Figure 1 shows the dynamical analysis for the different solution cases of Family 1. Plot 1 and 3 depict
the single solitons moving in the positive direction of x-axis, and Plot 2 depicts the kink-soliton moving
in the nagetive direction of the x-axis. 3D plots are shown in the xy-coyrdinates, and 2D plots are
shown with respect to the different time values as t = 0, 1, and 2.

- In Figure 2, we analyze the dynamical behavior for the different solution cases of Family 2. Plot 2
and 3 depict the bright-dark single solitons moving in the nagetive direction of x-axis, and Plot 1
depicts the periodic-soliton moving in the positive direction of the x-axis. 3D plots are shown in the
xy-coyrdinates, and 2D plots are shown with respect to the different time values as (d) t = 1, 2, 3, (e)
t = 0.8, 1.8, 2.8, and (f) t = 1, 2, 3.

- Figure 3 depicts the graphical analysis for the different solution cases of Family 3. Plot 1 shows the
kink-soliton moving in the nagetive direction of x-axis, and Plot 2 shows a periodic-soliton moving in
the nagetive direction of x-axis. 3D plots are shown in the xy-coyrdinates, and 2D plots are shown
with respect to the different time values as t = 0, 1, and 2.

- In Figure 4, we analyze the dynamical analysis for the different solution cases of Family 4. Plot 1 and
3 shows the solitons with periodic background moving in the positive and nagetive direction of x-axis,
respectively; and Plot 2 shows a periodic-soliton moving in the nagetive direction of x-axis. 3D plots
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are shown in the xy-coyrdinates, and 2D plots are shown with respect to the different time values as
(d) t = 1, 2, 3, (e) and (f) t = 0, 1, 2.

5 Conclusions

This research investigated the analytic solutions of a (2+1)-dimensional eBO equation with the generalized
exponential rational function method. An ordinary differential equation was obtained, having a wave trans-
formation for the studied partial differential equation. Utilizing the trial function for analytic solutions,
we obtained several exponential solutions with different families of arbitrary choices for the constant pa-
rameters. We generated solutions in the form of rational and exponential functions with several arbitrary
parameters. Dynamical analysis for the different obtained solutions was performed using the symbolic soft-
ware Mathematica. These dynamics revealed the formation of various wave structures, including solitons,
periodic solitons or breathers, kink solitons, and solitons with a periodic background. The wave structures
depicted the significance of nonlinearity and dispersion present in the studied eBO equation with the dif-
ferent values of the suitable parameters. Generated solitons balance the nonlinearity and dispersion as in
KdV or Schrödinger equation, which are fundamental studies for the solitary waves. The investigated eBO
equation plays a crucial role in nonlinear sciences, particularly in the study of solitary waves, which have
significant physical implications in various scientific fields, including nonlinear sciences, applied mathemat-
ics, and physics.
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for analyzing three novel physical fluid extended KP, Boussinesq, and KP-Boussinesq equations, Multi-
solitons/shocks and lumps, Results in Engineering, Vol. 23, p. 102727, 2024.
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