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Abstract

Graph theory investigates mathematical structures consisting of vertices and edges, providing a foundation
for modeling relationships and connectivity. A MetaGraph is a higher-level graph in which the vertices are
themselves graphs, with edges representing specified relations among these graphs. An Iterated MetaGraph
extends this concept recursively: its vertices are MetaGraphs, thereby forming a hierarchy of graph-of-
graphs structures across multiple levels. In this paper, we introduce two new extensions, the Molecular
MetaGraph and the Molecular Iterated MetaGraph, which generalize the concept of molecular graphs through
the frameworks of MetaGraphs and Iterated MetaGraphs. Furthermore, we provide illustrative applications
of these models in biochemistry. These applications demonstrate how an iterative, meta-level perspective
can be applied to molecular graphs, offering new insights into biochemical structures and processes.

1 Preliminaries

This section presents the fundamental concepts and definitions that underpin the discussions in this paper.
Unless otherwise noted, all graphs considered here are finite.
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1.1 MetaGraph(Graph of Graph)

Graph theory investigates mathematical structures consisting of vertices and edges to model relationships
and connectivity [1,2]. A MetaGraph is a graph whose vertices are themselves graphs, with edges representing
specified relations between those graphs (cf. [3–5]).

Definition 1.1 (Metagraph (graph of graphs)). (cf. [6]) Fix a nonempty universe G of finite graphs (undi-
rected, loopless by default) and a nonempty family of binary relations

R ⊆ P
(
G×G

)
.

A metagraph over (G,R) is a directed, labelled multigraph

M = (V,E, s, t, λ)

with
V ⊆ G, s, t : E → V, λ : E → R,

satisfying the incidence constraint
∀e ∈ E :

(
s(e), t(e)

)
∈ λ(e).

Elements of V are meta-vertices (each is a graph G ∈ G). For e ∈ E with λ(e) = R, we write s(e)
R−→ t(e)

and call e a meta-edge. If R = {R} is a singleton, labels may be omitted. If every R ∈ R is symmetric, M
can be viewed as an undirected labelled multigraph.

Remark 1.2. We fix a common base universe G of finite, loopless graphs that encode biochemical modules.
Each G ∈ G comes with a vertex-labeling `V : V (G)→ ΣV (e.g. metabolite/protein/gene names) and, when
needed, an edge-labeling `E : E(G)→ ΣE (e.g. reaction/interaction types). We use the following chemically
meaningful binary relations on G:

RshareM(G,H) :⇐⇒ {metabolite names in G} ∩ {metabolite names in H} 6= ∅,
RshareP(G,H) :⇐⇒ {protein names in G} ∩ {protein names in H} 6= ∅,
RGRN∆(G,H) :⇐⇒ E(G)4E(H) 6= ∅ (directed GRNs; activation/inhibition labels allowed).

Set R := {RshareM, RshareP, RGRN∆}.

Each example specifies a metagraph M = (V,E, s, t, λ) over (G,R) and verifies the incidence constraint.

Example 1.3 (Metabolic module metagraph: glycolysis–link–TCA). Let the pathway graphs be

GGly : V = {Glc,G6P,F6P,Pyr}, E = {Glc→G6P, G6P→F6P, F6P→Pyr},
GPDH : V = {Pyr,AcCoA,CO2}, E = {Pyr→AcCoA},
GTCA : V = {AcCoA,OAA,Citrate, Succinate,Malate}, E = {AcCoA + OAA→Citrate, . . .}.

Define the metagraph Mmetab by

V = {GGly, GPDH, GTCA}, E = {e1, e2},

s(e1) = GGly, t(e1) = GPDH, λ(e1) = RshareM (witness Pyr),

s(e2) = GPDH, t(e2) = GTCA, λ(e2) = RshareM (witness AcCoA).

For each e ∈ E, (s(e), t(e)) ∈ λ(e) by the indicated shared metabolite, so the incidence constraint holds.
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Example 1.4 (Protein-complex metagraph: shared subunits). Let simple complex graphs be

GCplxA : V = {E1, E2}, E =
{
{E1, E2}

}
,

GCplxB : V = {E2, E3}, E =
{
{E2, E3}

}
,

GCplxC : V = {E4}, E = ∅.

Define the metagraph Mcplx by

V = {GCplxA, GCplxB, GCplxC}, E = {eAB}, s(eAB) = GCplxA, t(eAB) = GCplxB, λ(eAB) = RshareP,

witnessed by the shared subunit E2. Then (s(eAB), t(eAB)) ∈ RshareP; no edge is drawn to GCplxC because
ECplxC shares no protein.

Example 1.5 (Condition-specific GRN metagraph: differential regulation). Let directed GRNs (edges la-
beled by {act, inh}) be

G
(A)
GRN : V = {TF1,G1,G2}, E = {TF1

act−−→ G1, TF1
act−−→ G2},

G
(B)
GRN : V = {TF1,G1,G2}, E = {TF1

act−−→ G1},

G
(C)
GRN : V = {TF2,G2}, E = {TF2

inh−−→ G2}.

Define Mgrn by

V = {G(A)
GRN, G

(B)
GRN, G

(C)
GRN}, E = {eAB, eAC},

s(eAB) = G
(A)
GRN, t(eAB) = G

(B)
GRN, λ(eAB) = RGRN∆ (witness: edge TF1→ G2 present only in A),

s(eAC) = G
(A)
GRN, t(eAC) = G

(C)
GRN, λ(eAC) = RGRN∆ (many-edge difference).

Thus (s(e), t(e)) ∈ λ(e) for each e, so Mgrn is a valid metagraph.

1.2 Iterated MetaGraph(Graph of Graph of ... of Graph)

An Iterated MetaGraph is a graph whose vertices are metagraphs, recursively extending graph-of-graphs
structure to multiple hierarchical levels [7].

Definition 1.6 (Unit metagraph embedding). [7] For X ∈ G define the unit metagraph

U(X) :=
(
{X}, ∅, , ,

)
.

This gives an injective map U : G ↪→ Obj
(
Meta(G,R)

)
.

Definition 1.7 (Relation lifting). Given R on G, define its lift R↑ on finite metagraphs over (G,R) by

∀R ∈ R, (M1,M2) ∈ R↑ ⇐⇒ ∃x ∈ V (M1), y ∈ V (M2) : (x, y) ∈ R.

Set R↑ := {R↑ : R ∈ R}.

Definition 1.8 (Iterated object and relation universes). Define recursively for t ∈ N0:

G(0) := G, R(0) := R,

G(t+1) :=
{

finite metagraphs over
(
G(t),R(t)

)}
, R(t+1) :=

(
R(t)

)↑
.
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Definition 1.9 (Iterated MetaGraph of depth t). For t ∈ N0, an iterated metagraph of depth t is a metagraph

M (t) = (V (t), E(t), s(t), t(t), λ(t))

over
(
G(t),R(t)

)
, i.e., V (t) ⊆ G(t), λ(t) : E(t) → R(t) and

∀e ∈ E(t) :
(
s(t)(e), t(t)(e)

)
∈ λ(t)(e).

Remark 1.10. We use the relation lifting of the preliminaries: for R ∈ R and metagraphs M1,M2 over
(G,R),

(M1,M2) ∈ R↑ ⇐⇒ ∃X ∈ V (M1), ∃Y ∈ V (M2) such that (X,Y ) ∈ R.

Example 1.11 (Depth t = 1: Metabolism vs. complexes, linked by an annotation map). Let Mmetab and
Mcplx be as above. Define a base cross-relation Rannot ⊆ G×G by

(G,H) ∈ Rannot ⇐⇒ ∃ enzyme E ∈ V (H) that catalyzes some edge of G.

(Equivalently, fix an annotation map κ : {enzymes} → {reactions} and require κ(E) ∈ E(G).) Assume
κ(E1) = G6P→ F6P (a step in GGly) and E1 ∈ V (GCplxA). Then (GGly, GCplxA) ∈ Rannot. Form the
depth-1 metagraph

N
(1)
1 =

(
{Mmetab,Mcplx }, {f}, s(1), t(1), λ(1)

)
,

with s(1)(f) = Mmetab, t(1)(f) = Mcplx, and λ(1)(f) = R↑annot. By the witness (GGly, GCplxA), (s(1)(f), t(1)(f)) ∈
λ(1)(f), so N

(1)
1 is valid.

Example 1.12 (Depth t = 1: Comparative metabolism across species). Build two organism-specific meta-
graphs using RshareM:

MEc
met : V = {GEc

Gly, G
Ec
TCA}, E =

{
GEc

Gly
RshareM−−−−−→ GEc

TCA

}
with witness metabolite AcCoA (via the explicit PDH-link included in GEc

Gly), and

MSc
met : V = {GSc

Gly, G
Sc
TCA}, E =

{
GSc

Gly
RshareM−−−−−→ GSc

TCA

}
with the same witness. At depth 1, set

N
(1)
2 = ({MEc

met,M
Sc
met}, {g}, s(1), t(1), λ(1)), s(1)(g) = MEc

met, t
(1)(g) = MSc

met, λ
(1)(g) = R↑shareM.

Since GEc
TCA and GSc

TCA both contain the metabolite Citrate, (GEc
TCA, G

Sc
TCA) ∈ RshareM, which witnesses

(s(1)(g), t(1)(g)) ∈ λ(1)(g).

Example 1.13 (Depth t = 2: Linking depth-1 projects by double lift). Let N
(1)
1 and N

(1)
2 be as above.

Consider the depth-2 metagraph

Q(2) = (V (2), E(2), s(2), t(2), λ(2)), V (2) = {N(1)
1 ,N

(1)
2 }, E

(2) = {h}.

Define
s(2)(h) = N

(1)
1 , t(2)(h) = N

(1)
2 , λ(2)(h) = (R↑shareM)↑.

To witness (s(2)(h), t(2)(h)) ∈ λ(2)(h), pick X = Mmetab ∈ V (N
(1)
1 ) and Y = MEc

met ∈ V (N
(1)
2 ). Since

GTCA ∈ V (X) and GEc
TCA ∈ V (Y ) share metabolite Citrate, we have (GTCA, G

Ec
TCA) ∈ RshareM, hence

(X,Y ) ∈ R↑shareM, which by definition yields (s(2)(h), t(2)(h)) ∈ (R↑shareM)↑. Thus Q(2) is a valid depth-2
iterated metagraph.
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1.3 Molecular Graph

A Molecular Graph models a molecule with atoms as vertices and bonds as edges, thereby representing its
structural connectivity [8–10]. Related concepts include the Molecular HyperGraph [11,12] and the Molecular
SuperHyperGraph [13, 14], which provide generalized frameworks for capturing higher-order interactions in
molecular structures. Also the related concepts such as Chemical Graphs [15, 16], Neutrosophic Chemical
Graphs [17], and Molecular Fuzzy Graphs [18] are also well known.

Definition 1.14 (Molecular Graph). (cf. [19, 20]) A molecular graph is a finite, simple, undirected graph
G = (V,E) in which each vertex v ∈ V represents an atom and each edge e = {u, v} ∈ E represents a
chemical bond between atoms u and v. (Optionally, vertex/edge labels may encode atom types and bond
types or orders.)

Example 1.15 (Water H2O as a molecular graph). Let

V = {O,H1, H2}, E =
{
{O,H1}, {O,H2}

}
.

Then G = (V,E) is a finite, simple, undirected molecular graph: each vertex represents an atom (oxygen O,
hydrogens H1, H2) and each edge represents an O–H bond. Optionally, one may add labels

τ(O) = O, τ(Hi) = H (i = 1, 2), β({O,Hi}) = single,

and the adjacency matrix (ordering O,H1, H2) is

A =

0 1 1
1 0 0
1 0 0

 , deg(O) = 2, deg(H1) = deg(H2) = 1.

2 Main Results of this Paper

This section presents the main results established in this paper.

2.1 Molecular MetaGraph

A Molecular MetaGraph is a higher-level graph where vertices are molecular graphs and edges encode
chemically invariant relations among them. We first fix a typed setting for molecules.

Definition 2.1 (Typed molecular graph and type-preserving isomorphism). Let ΣV be a finite set of atom
types (e.g. element symbols, hybridizations, charges) and ΣE a finite set of bond types (e.g. single, double,
triple, aromatic). A typed molecular graph is a quadruple

G = (V,E, τ, β),

where V is a finite vertex set (atoms), E ⊆
(
V
2

)
(bonds), τ : V → ΣV assigns each atom its type, and

β : E → ΣE assigns each bond its type. A bijection ϕ : V (G) → V (H) between typed molecular graphs G
and H is a type-preserving isomorphism (notation G ∼= H) if

{u, v} ∈ E(G) ⇐⇒ {ϕ(u), ϕ(v)} ∈ E(H), τH(ϕ(v)) = τG(v), βH({ϕ(u), ϕ(v)}) = βG({u, v}).

Let Mol denote the universe of all finite typed molecular graphs (Definition 2.1).
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Definition 2.2 (Chemically invariant relations). A binary relation R ⊆Mol×Mol is chemically invariant
if for all G,H,G′, H ′ ∈Mol,

G ∼= G′ and H ∼= H ′ and (G,H) ∈ R =⇒ (G′, H ′) ∈ R.

Let Rchem be any nonempty family of chemically invariant relations. Typical examples (not required for the
theory) include: substructure (Rsub), reaction-step (Rrxn), isomer-of (Riso), scaffold-similarity-at-threshold-θ
(Rsim,θ), etc.

Definition 2.3 (Molecular MetaGraph). A Molecular MetaGraph over (Mol,Rchem) is a directed, labelled
multigraph

M = (V,E, s, t, λ)

with
V ⊆Mol, s, t : E → V, λ : E → Rchem,

satisfying the metagraph incidence constraint

∀e ∈ E :
(
s(e), t(e)

)
∈ λ(e).

The elements of V are meta-vertices (each is a molecular graph), and each e ∈ E is a meta-edge labelled by
a chemical relation λ(e) that holds on its endpoints.

Remark 2.4. We use the chemically invariant base relations

Rsub, Rrxn, Riso, Rsim,θ, Req ∈ Rchem,

where Rsub denotes “is a (typed) substructure of,” Rrxn denotes “reactant-to-product in a fixed elementary
step,” Riso denotes “constitutional isomers,” Rsim,θ denotes “scaffold similarity at threshold θ,” and Req is
molecular identity (type-preserving isomorphism). Recall that a Molecular MetaGraph is M = (V,E, s, t, λ)
with V ⊆Mol and ∀e ∈ E : (s(e), t(e)) ∈ λ(e).

Example 2.5 (Molecular MetaGraph I: A single-step reaction mini-network (Fischer esterification)). Let
the molecular vertices be

V = {GAA, GEtOH, GEA, GH2O},

standing for acetic acid (SMILES CC(=O)O), ethanol (CCO), ethyl acetate (CCOC(=O)C), and water (O). Define
four directed meta-edges encoding reactant→product incidence in the esterification step:

E = {e1, e2, e3, e4},

s(e1) = GAA, t(e1) = GEA, λ(e1) = Rrxn,

s(e2) = GEtOH, t(e2) = GEA, λ(e2) = Rrxn,

s(e3) = GAA, t(e3) = GH2O, λ(e3) = Rrxn,

s(e4) = GEtOH, t(e4) = GH2O, λ(e4) = Rrxn.

Then Mester = (V,E, s, t, λ) is a Molecular MetaGraph over (Mol,Rchem).

Example 2.6 (Molecular MetaGraph II: Substructure & similarity on simple aromatics). Let

V = {GBz, GTol, GPh},

for benzene (c1ccccc1), toluene (Cc1ccccc1), and phenol (Oc1ccccc1). Define

E = {e1, e2, e3},
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with
s(e1) = GBz, t(e1) = GTol, λ(e1) = Rsub,

s(e2) = GBz, t(e2) = GPh, λ(e2) = Rsub,

s(e3) = GTol, t(e3) = GPh, λ(e3) = Rsim, 0.6.

Interpreting Rsim,0.6 as “Tanimoto (scaffold) similarity ≥ 0.6,” Marom = (V,E, s, t, λ) is a Molecular Meta-
Graph in which benzene is a typed substructure of toluene and phenol, and toluene is scaffold-similar to
phenol.

Example 2.7 (Molecular MetaGraph III: Constitutional isomers of C3H8O). Let

V = {Gn-PrOH, Gi-PrOH, GMeOEt},

for 1-propanol (CCCO), isopropanol (CC(O)C), and methoxyethane (CCOC). Since Riso is symmetric, we realize
it as a bidirected triangle:

E = {e12, e21, e13, e31, e23, e32},

where, writing (1, 2, 3) = (n-PrOH, i-PrOH, MeOEt),

s(eij) = Gi, t(eij) = Gj , λ(eij) = Riso (i 6= j).

Then MisoC3H8O = (V,E, s, t, λ) is a Molecular MetaGraph whose meta-edges encode isomerism.

Theorem 2.8 (Every Molecular MetaGraph is a MetaGraph). With G := Mol and R := Rchem, every
structure M as in Definition 2.3 is a metagraph over (G,R) in the sense of the preliminaries.

Proof. Comparing Definition 2.3 with the metagraph schema M = (V,E, s, t, λ), we must verify V ⊆ G,
s, t : E → V , λ : E → R, and the incidence condition

(
s(e), t(e)

)
∈ λ(e) for all e ∈ E. By construction, V ⊆

Mol = G, s, t, λ have the required codomains, and the last property is explicitly imposed in Definition 2.3.
Therefore M is a metagraph over (G,R).

Next we show that Molecular MetaGraphs generalize ordinary molecular graphs by a faithful embedding
that preserves all atom and bond information.

Definition 2.9 (Atomic one-vertex templates). For each a ∈ ΣV , let K
(a)
1 denote the one-vertex graph with

vertex-type a and no edges; formally,

K
(a)
1 =

(
{∗}, ∅, τ

K
(a)
1

(∗) := a, β undefined
)
∈Mol.

Definition 2.10 (Bond-labelled meta-relations). For each b ∈ ΣE , define a relation Rbond,b ⊆ Mol ×Mol
by (

K
(a)
1 ,K

(a′)
1

)
∈ Rbond,b

⇐⇒ “there exists a molecular graph containing a b-bond between an a-atom and an a′-atom”.

This relation is chemically invariant (it depends only on types), hence Rbond,b ∈ Rchem after enlarging Rchem

if necessary.

Definition 2.11 (Canonical embedding J : Mol ↪→ MolMeta). Given G = (V,E, τ, β) ∈ Mol, define a
Molecular MetaGraph

J(G) :=
(
V ∗, E∗, s∗, t∗, λ∗

)
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as follows:

V ∗ := {K(τ(v))
1 | v ∈ V },

E∗ := { e∗uv | {u, v} ∈ E } (a multiset if needed),

s∗(e∗uv) := K
(τ(u))
1 , t∗(e∗uv) := K

(τ(v))
1 ,

λ∗(e∗uv) := Rbond, β({u,v}).

Let π : V ∗ → V be the bijection π
(
K

(τ(v))
1

)
:= v.

Theorem 2.12 (Molecular MetaGraphs generalize molecular graphs). For every typed molecular graph
G = (V,E, τ, β), the “collapse” of J(G) recovers G exactly:

col
(
J(G)

)
= G,

where
col
(
J(G)

)
:=
(
V, E, τ, β

)
with V and τ, β taken from G and E reconstructed from J(G) by

E =
{
{π(s∗(e∗)), π(t∗(e∗))} : e∗ ∈ E∗, λ∗(e∗) = Rbond, β({π(s∗(e∗)),π(t∗(e∗))})

}
.

Consequently, J is injective on isomorphism classes and embeds the category of typed molecular graphs (with
type-preserving isomorphisms) fully and faithfully into the category of Molecular MetaGraphs whose edges
use only {Rbond,b : b ∈ ΣE}.

Proof. Fix G = (V,E, τ, β) and build J(G) as in Definition 2.11. By construction, π : V ∗ → V is a bijection.
We verify equality of edge sets and labels by direct elementwise computation.

(⊆) Let e∗ = e∗uv ∈ E∗. Then by definition,

s∗(e∗) = K
(τ(u))
1 , t∗(e∗) = K

(τ(v))
1 , λ∗(e∗) = Rbond, β({u,v}).

Applying π we obtain
{π(s∗(e∗)), π(t∗(e∗))} = {u, v} ∈ E,

and the recovered bond type is

β
(
{π(s∗(e∗)), π(t∗(e∗))}

)
= β({u, v}),

which matches the label index of λ∗(e∗). Hence every meta-edge contributes exactly the original bond.
(⊇) Conversely, let {u, v} ∈ E. Then e∗uv ∈ E∗ by construction, and

{π(s∗(e∗uv)), π(t∗(e∗uv))} = {u, v}, λ∗(e∗uv) = Rbond, β({u,v}),

so the edge {u, v} is recovered in col(J(G)) with the correct bond type.
Thus the recovered edge multiset and labels coincide elementwise with those of G, and vertex types are

preserved by π:

τ
(
π(K

(τ(v))
1 )

)
= τ(v).

Therefore col(J(G)) = G as graphs with types. This proves that J is injective on objects up to isomorphism
and, by the explicit reconstruction, that hom-sets are preserved (faithfulness).
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2.2 Molecular Iterated MetaGraph

A Molecular Iterated MetaGraph recursively treats Molecular MetaGraphs as vertices, building multi-level
hierarchies of graph-of-graphs structures across chemistry. We lift chemically invariant relations level by
level, as in the iterated metagraph construction from the preliminaries, but restricted to Mol and Rchem.

Definition 2.13 (Lifted chemical relations). Set Mol(0) := Mol and R(0)
chem := Rchem. Given Mol(t) and

R(t)
chem, define

Mol(t+1) :=
{

finite Molecular MetaGraphs over
(
Mol(t),R(t)

chem

) }
,

and for each R ∈ R(t)
chem its lift R↑ ⊆Mol(t+1) ×Mol(t+1) by(
M1,M2

)
∈ R↑ ⇐⇒ ∃X ∈ V (M1), Y ∈ V (M2) with (X,Y ) ∈ R.

Set R(t+1)
chem := {R↑ : R ∈ R(t)

chem}.

Definition 2.14 (Molecular Iterated MetaGraph of depth t). For t ∈ N0, a Molecular Iterated MetaGraph
of depth t is a metagraph

M(t) = (V (t), E(t), s(t), t(t), λ(t))

over
(
Mol(t),R(t)

chem

)
, i.e.,

V (t) ⊆Mol(t), λ(t) : E(t) → R(t)
chem, ∀e ∈ E(t) :

(
s(t)(e), t(t)(e)

)
∈ λ(t)(e).

Remark 2.15. For iterated examples we use the lifted relations of Definition 2.14: for R ∈ R(t)
chem, its lift

R↑ satisfies
(M1,M2) ∈ R↑ ⇐⇒ ∃X ∈ V (M1), ∃Y ∈ V (M2) with (X,Y ) ∈ R.

Example 2.16 (Molecular Iterated MetaGraph I (depth t = 1): Substructure lifted across two meta-graphs).

Let MA = Marom from Example 2 restricted to VA = {GBz, GTol} and edge GBz
Rsub−−−→ GTol. Let MB have

VB = {GBz, GPh} and edge GBz
Rsub−−−→ GPh. Define a depth-1 iterated meta-graph

N(1) = (V (1), E(1), s(1), t(1), λ(1)),

with
V (1) = {MA,MB}, E(1) = {f}, s(1)(f) = MA, t

(1)(f) = MB, λ
(1)(f) = R↑sub.

Since (GBz, GPh) ∈ Rsub with GBz ∈ V (MA) and GPh ∈ V (MB), we have f ∈ R↑sub by definition, so N(1) is a
valid Molecular Iterated MetaGraph of depth 1.

Example 2.17 (Molecular Iterated MetaGraph II (depth t = 1): Equality-lift between forward and reverse
steps). Let Mester be Example 1 (forward esterification). Let Mhydr be the corresponding hydrolysis meta-
graph with edges GEA→GAA, GEA→GEtOH, GH2O→GAA, GH2O→GEtOH all labelled Rrxn. Define

H(1) = ({Mester,Mhydr }, {g1, g2}, s(1), t(1), λ(1)),

with

s(1)(g1) = Mester, t
(1)(g1) = Mhydr, s

(1)(g2) = Mhydr, t
(1)(g2) = Mester, λ

(1)(g1) = λ(1)(g2) = R↑eq.

Because both meta-graphs contain GEA (and other common molecules), there exist X = Y = GEA with

(X,Y ) ∈ Req; hence (Mester,Mhydr) ∈ R↑eq and H(1) is a valid depth-1 Molecular Iterated MetaGraph.
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Example 2.18 (Molecular Iterated MetaGraph III (depth t = 2): Project-level linkage via double lift).
Form two depth-1 nodes:

P
(1)
1 := ({MA,Mester}, {p}, s(1), t(1), λ(1)), s(1)(p) = MA, t

(1)(p) = Mester, λ
(1)(p) = R↑eq,

witnessed by the shared molecule GH2O (or any chosen common species), and

P
(1)
2 := ({MB,Mhydr}, {q}, s(1), t(1), λ(1)), s(1)(q) = MB, t

(1)(q) = Mhydr, λ
(1)(q) = R↑eq,

witnessed by GAA or GEtOH. Now define a depth-2 meta-graph

Q(2) = (V (2), E(2), s(2), t(2), λ(2)), V (2) = {P(1)
1 ,P

(1)
2 }, E

(2) = {r},

with
s(2)(r) = P

(1)
1 , t(2)(r) = P

(1)
2 , λ(2)(r) =

(
R↑eq

)↑
.

To see r ∈ (R↑eq)↑, take X = Mester ∈ V (P
(1)
1 ) and Y = Mhydr ∈ V (P

(1)
2 ); we already have (X,Y ) ∈ R↑eq

(Example 6), so by the lift definition (P
(1)
1 ,P

(1)
2 ) ∈ (R↑eq)↑. Thus Q(2) is a Molecular Iterated MetaGraph of

depth 2.

Theorem 2.19 (Molecular Iterated MetaGraphs are Iterated MetaGraphs). For every t ∈ N0, any M(t) as
in Definition 2.14 is an iterated metagraph of depth t in the sense of the preliminaries (with base universe
Mol and base relations Rchem).

Proof. By Definition 2.13, (Mol(t),R(t)
chem) is obtained from (Mol(t−1),R(t−1)

chem ) by the same lifting scheme

used for general iterated metagraphs. Thus V (t) ⊆Mol(t), λ(t) takes values in R(t)
chem, and each edge satisfies

the required incidence. Therefore M(t) is a metagraph over
(
Mol(t),R(t)

chem

)
, i.e. an iterated metagraph of

depth t.

3 Additional Results: Some Applications in Biochemistry

Biochemistry is the scientific study of chemical processes, reactions, and molecular interactions occurring
within living organisms [21]. This section presents application examples of the Molecular MetaGraph and
Molecular Iterated MetaGraph, as defined in this paper, within the field of biochemistry.

Example 3.1 (ATP-dependent phosphorylation (hexokinase step)). ATP-dependent phosphorylation is a
biochemical process where ATP donates its phosphate group to a substrate, regulating energy transfer and
cellular signaling (cf. [22, 23]). Let the molecular vertex set be

V = {GATP, GADP, GGlc, GG6P },

representing ATP, ADP, glucose, and glucose-6-phosphate. Model the hexokinase reaction

ATP + Glc −→ ADP + G6P (+H+)

by the directed meta-edges

E = {e1, e2}, s(e1) = GATP, t(e1) = GADP, λ(e1) = Rrxn, s(e2) = GGlc, t(e2) = GG6P, λ(e2) = Rrxn.

Then
MHK := (V,E, s, t, λ)

is a Molecular MetaGraph over (Mol,Rchem) because each edge satisfies the incidence constraint
(
s(ei), t(ei)

)
∈

Rrxn = λ(ei) (i = 1, 2).
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Example 3.2 (NADH-coupled reduction (lactate dehydrogenase step)). Let

V = {GNAD+ , GNADH, GPyr, GLac },

representing NAD+, NADH, pyruvate, and lactate. For the LDH reaction

NADH + Pyr −→ NAD+ + Lac,

take

E = {e1, e2}, s(e1) = GNADH, t(e1) = GNAD+ , λ(e1) = Rrxn, s(e2) = GPyr, t(e2) = GLac, λ(e2) = Rrxn.

Thus MLDH = (V,E, s, t, λ) is a valid Molecular MetaGraph since
(
s(ei), t(ei)

)
∈ Rrxn = λ(ei) for i = 1, 2.

We use the lifted relations of Definition 2.13. Recall:

(M1,M2) ∈ R↑ ⇐⇒ ∃X ∈ V (M1), ∃Y ∈ V (M2) with (X,Y ) ∈ R.

Example 3.3 (Depth t = 1: Linking consecutive glycolytic steps via a lifted equality). Let MHK be the
hexokinase meta-graph from the first example. Define the phosphoglucose isomerase (PGI) [24] meta-graph

MPGI : V ′ = {GG6P, GF6P}, E′ = {e′1, e′2},

with

s(e′1) = GG6P, t(e
′
1) = GF6P, λ(e′1) = Rrxn, s(e′2) = GF6P, t(e

′
2) = GG6P, λ(e′2) = Rrxn.

Form a depth-1 iterated meta-graph

N
(1)
Gly = (V (1), E(1), s(1), t(1), λ(1)),

with
V (1) = {MHK, MPGI }, E(1) = {f}, s(1)(f) = MHK, t

(1)(f) = MPGI, λ
(1)(f) = R↑eq.

Since GG6P ∈ V (MHK) ∩ V (MPGI), we have (GG6P, GG6P) ∈ Req, so by definition
(
s(1)(f), t(1)(f)

)
∈ R↑eq =

λ(1)(f). Hence N
(1)
Gly is a valid Molecular Iterated MetaGraph of depth 1.

Example 3.4 (Depth t = 2: Dehydrogenase family coupling via double lift). (cf. [25, 26]) Construct three
Molecular MetaGraphs on redox-coupled steps:

(i) LDH (already defined) with molecules {GNAD+ , GNADH, GPyr, GLac}.
(ii) MDH (malate dehydrogenase):

MMDH : V = {GNAD+ , GNADH, GOAA, GMal}, E = {e1, e2},

s(e1) = GNADH, t(e1) = GNAD+ , λ(e1) = Rrxn, s(e2) = GOAA, t(e2) = GMal, λ(e2) = Rrxn.

(iii) GAPDH (glyceraldehyde-3-phosphate dehydrogenase):

MGAPDH : V = {GNAD+ , GNADH, GG3P, G1,3-BPG}, E = {e1, e2},

s(e1) = GNAD+ , t(e1) = GNADH, λ(e1) = Rrxn, s(e2) = GG3P, t(e2) = G1,3-BPG, λ(e2) = Rrxn.

Create two depth-1 nodes using lifted equality (they share NAD+/NADH):

P
(1)
1 = ({MLDH,MMDH}, {p}, s(1), t(1), λ(1))
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with s(1)(p) = MLDH, t
(1)(p) = MMDH, λ

(1)(p) = R↑eq, witnessed by the common molecule GNAD+ (or
GNADH); and

P
(1)
2 = ({MGAPDH,MLDH}, {q}, s(1), t(1), λ(1))

with s(1)(q) = MGAPDH, t
(1)(q) = MLDH, λ

(1)(q) = R↑eq, witnessed again by NAD+/NADH.
Now define a depth-2 Molecular Iterated MetaGraph

Q(2) = (V (2), E(2), s(2), t(2), λ(2)), V (2) = {P(1)
1 ,P

(1)
2 }, E

(2) = {r},

with
s(2)(r) = P

(1)
1 , t(2)(r) = P

(1)
2 , λ(2)(r) =

(
R↑eq

)↑
.

To verify incidence, choose X = MLDH ∈ V (P
(1)
1 ), Y = MLDH ∈ V (P

(1)
2 ). Because X and Y each contain

GNAD+ (hence (GNAD+ , GNAD+) ∈ Req), we get (X,Y ) ∈ R↑eq, which witnesses
(
s(2)(r), t(2)(r)

)
∈ (R↑eq)↑.

Therefore Q(2) is a valid depth-2 Molecular Iterated MetaGraph.

4 Conclusion

In this paper, we studied new extensions called the Molecular MetaGraph and the Molecular Iterated Meta-
Graph, which generalize the notion of molecular graphs using the frameworks of MetaGraphs and Iterated
MetaGraphs.

In future work, we aim to investigate further extensions based on alternative graph frameworks, such as
Fuzzy Graphs [27], Neutrosophic Graphs [28,29], Directed Graphs [30], HyperFuzzy Graphs [31], HyperGraph
[32], SuperHyperGraph [33,34], Bidirected Graphs [35], and Plithogenic Graphs [36]. Moreover, we hope that
this line of research will advance toward applications in the field of chemistry as well as the development of
algorithms.
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[19] Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for molecular graphs. arXiv
preprint arXiv:2003.03123, 2020.

[20] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs using structural motifs.
In International conference on machine learning, pages 4839–4848. PMLR, 2020.

[21] Mary K Campbell and Sharm O Farrell. Biochemistry. 2009.

[22] Jesse C Hay, Phillip L Fisette, Glenn H Jenkins, Kiyoko Fukami, Tadaomi Takenawa, Richard A Anderson, and Thomas FJ
Martin. Atp-dependent inositide phosphorylation required for ca2+-activated secretion. Nature, 374(6518):173–177, 1995.

[23] Jing Jing Ye, Jonathan Reizer, Xuewen Cui, and Milton H Saier Jr. Atp-dependent phosphorylation of serine-46 in the
phosphocarrier protein hpr regulates lactose/h+ symport in lactobacillus brevis. Proceedings of the National Academy of
Sciences, 91(8):3102–3106, 1994.

[24] T Yanagawa, T Funasaka, S Tsutsumi, H Watanabe, and A Raz. Novel roles of the autocrine motility factor/phosphoglucose
isomerase in tumor malignancy. Endocrine-Related Cancer, 11(4):749–759, 2004.

[25] James G Ferry. Co dehydrogenase. Annual Review of Microbiology, 49:305–334, 1995.

[26] Christopher Anthony and Paul Williams. The structure and mechanism of methanol dehydrogenase. Biochimica et Bio-
physica Acta (BBA)-Proteins and Proteomics, 1647(1-2):18–23, 2003.

[27] Azriel Rosenfeld. Fuzzy graphs. In Fuzzy sets and their applications to cognitive and decision processes, pages 77–95.
Elsevier, 1975.

[28] S. N. Suber Bathusha, Sowndharya Jayakumar, S. Angelin, and Kavitha Raj. The energy of interval-valued complex neu-
trosophic graph structures: Framework, application and future research directions. Neutrosophic Systems with Applications,
2024.

[29] Said Broumi, Mohamed Talea, Assia Bakali, and Florentin Smarandache. Single valued neutrosophic graphs. Journal of
New theory, 10:86–101, 2016.

[30] Jinta Jose, Bobin George, and Rajesh K Thumbakara. Soft directed graphs, their vertex degrees, associated matrices and
some product operations. New Mathematics and Natural Computation, 19(03):651–686, 2023.

[31] Takaaki Fujita. Advancing Uncertain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy,
Neutrosophic, Soft, Rough, and Beyond. Biblio Publishing, 2025.

2026 @ Transitus Publishing 56 Takaaki Fujita



Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 43-57, (2026)

[32] Claude Berge. Hypergraphs: combinatorics of finite sets, volume 45. Elsevier, 1984.

[33] Masoud Ghods, Zahra Rostami, and Florentin Smarandache. Introduction to neutrosophic restricted superhypergraphs
and neutrosophic restricted superhypertrees and several of their properties. Neutrosophic Sets and Systems, 50:480–487,
2022.

[34] Florentin Smarandache. Extension of HyperGraph to n-SuperHyperGraph and to Plithogenic n-SuperHyperGraph, and
Extension of HyperAlgebra to n-ary (Classical-/Neutro-/Anti-) HyperAlgebra. Infinite Study, 2020.

[35] Soumalya Joardar and Atibur Rahaman. Almost complex structure on finite points from bidirected graphs. Journal of
Noncommutative Geometry, 2023.

[36] Fazeelat Sultana, Muhammad Gulistan, Mumtaz Ali, Naveed Yaqoob, Muhammad Khan, Tabasam Rashid, and Tauseef
Ahmed. A study of plithogenic graphs: applications in spreading coronavirus disease (covid-19) globally. Journal of ambient
intelligence and humanized computing, 14(10):13139–13159, 2023.

2026 @ Transitus Publishing 57 Takaaki Fujita


	Preliminaries
	MetaGraph(Graph of Graph)
	Iterated MetaGraph(Graph of Graph of ... of Graph)
	Molecular Graph

	Main Results of this Paper
	Molecular MetaGraph
	Molecular Iterated MetaGraph

	Additional Results: Some Applications in Biochemistry
	Conclusion

