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Abstract

We introduce the notions of Network Hypertopology and Network Super-hypertopology, which extend the classical
graph-based model of network topology to higher-order structures on its power sets. A network topology G = (V, E)
encodes connectivity, directionality, and link metrics among devices. By endowing the hyperspace P (V ) with the
Vietoris (hypertopology) topology, we lift these closure axioms to families of node-sets. Iterating this construction
across iterated power sets Pn(V ) yields a Super-hypertopology that maintains arbitrary-union and finite-intersection
closure at every level. While we establish the formal definitions and foundational properties of these higher-order
topologies, their practical applications and empirical evaluation remain open for future investigation.

1 Preliminaries

In this section, we establish notation and recall basic concepts that will be used throughout. We assume familiarity
with elementary set theory and topology; for further details, see the cited references. The concepts discussed in this
paper are assumed to be finite.

1.1 Hyperstructures and Their Iterations

The notion of a hyperstructure arises by replacing an underlying set with its power set, thereby allowing operations on
collections of elements rather than on individual elements [1, 2]. Iterating this construction leads to superhyperstruc-
tures, which capture multi-level, hierarchical relationships [3, 4].
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Definition 1.1 (Base Set). Let S be a nonempty set, called the base set. All subsequent constructions—subsets, power
sets, and their iterates—are formed from S.

Definition 1.2 (Power Set). For any set S, its power set is

P (S) = { A | A ⊆ S},

the collection of all subsets of S, including both the empty set and S itself.

Definition 1.3 (nth Power Set). [5, 6] Let H be a set. We define the iterated power sets

P1(H) = P (H), Pk+1(H) = P
(
Pk (H)

)
(k ≥ 1).

That is, Pn(H) is the result of applying the power-set operator n times to H .

If one wishes to exclude the empty set at each stage, one can similarly define the reduced iterates

P∗1 (H) = P (H) \ {∅}, P∗k+1(H) = P∗
(
P∗k (H)

)
.

Example 1.4 (Iterated Power Sets in a Hierarchical Sensor Network). Let H = {S1, S2, S3} be the set of three wireless
sensors deployed in an Internet-of-Things application. Then:

P1(H) = P (H) =
{
∅, {S1}, {S2}, {S3}, {S1, S2}, {S1, S3}, {S2, S3}, {S1, S2, S3}

}
.

Each nonempty subset in P1(H) represents a possible sensor-group for local data aggregation or collaborative sensing.

Next, the second-level power set
P2(H) = P

(
P (H)

)
consists of all collections of sensor-groups. For instance, the element

=
{
{S1, S2}, {S3}

}
∈ P2(H)

encodes a two-cluster configuration in which S1 and S2 form one cluster and S3 stands alone.

At the third level,
P3(H) = P

(
P2(H)

)
,

each element is a collection of clusterings. For example,

Γ =
{
{{S1, S2}, {S3}}, {{S1}, {S2, S3}}

}
∈ P3(H)

represents a choice between two different clustering schemes at the meta-level.

In general, Pn(H) captures n-tier hierarchies of sensor groupings, enabling multi-scale modeling of network structure
and control.

Definition 1.5 (Classical Structure). (cf. [7, 8]) A Classical Structure is a mathematical framework defined on a non-
empty set H , characterized by one or more Classical Operations that adhere to specific Classical Axioms. Formally:

A Classical Operation is a function of the form:

#0 : Hm → H,

where m ≥ 1 denotes a positive integer, and Hm represents the m-fold Cartesian product of H . Examples include
algebraic operations such as addition and multiplication in structures like groups, rings, and fields.
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Definition 1.6 (Hyperstructure). (cf. [7]) A Hyperstructure extends the concept of a Classical Structure by operating
on the powerset of a base set. It is formally defined as:

H = (P (S), ◦),

where S is the base set, P (S) denotes its powerset, and ◦ is an operation defined for subsets within P (S).

Example 1.7 (Hyperstructure of a Modular Drone Assembly). In a simple modular drone design one considers the
following set of basic components:

S = {Frame, Motor, Propeller, Battery}.

Its power set

P (S) =
{
∅, {Frame}, {Motor}, {Propeller}, {Battery}, {Frame,Motor}, . . . , {Frame,Motor,Propeller,Battery}

}
consists of all possible (partial or complete) assemblies of these components. We define a binary hyperoperation

◦ : P (S) × P (S) −→ P (S), A ◦ B = A ∪ B,

which merges two subassemblies into their union. For example,

{Frame,Motor} ◦ {Propeller,Battery} = {Frame,Motor,Propeller,Battery},

yields the full drone configuration. The pair
(
P (S), ◦

)
thus forms a hyperstructure encoding the space of all modular

drone assemblies, where “adding” two configurations nondeterministically produces any combined assembly in the
union of their parts.

Definition 1.8 (nth Superhyperstructure). [4, 9] Let S be a nonempty set (the base set). Define iteratively for k ≥ 0:

P0(S) = S, Pk+1(S) = P
(
Pk (S)

)
,

where P denotes the ordinary power–set. Fix an integer n ≥ 1. The nth Superhyperstructure on S is the pair

SH n =
(
Pn(S), ◦n

)
,

where ◦n is the binary operation

◦n : Pn(S) × Pn(S) −→ Pn(S), A ◦n B = A ∪ B.

Example 1.9 (2-Superhyperstructure of a Modular Drone). Let the base set of drone components be

S = {Frame, Motor, Propeller, Battery}.

Then
P1(S) = P (S)

is the set of all subassemblies, such as {Frame,Motor} or {Propeller,Battery}. Next,

P2(S) = P
(
P (S)

)
consists of all collections of subassemblies. For instance, define two level-2 elements:

A =
{
{Frame,Motor}, {Frame,Propeller}

}
, B =

{
{Battery}, {Propeller,Battery}

}
.

Here A groups the structural and propulsion subassemblies, while B gathers the power units. The binary operation on
P2(S) is

A ◦2 B = A ∪ B =
{
{Frame,Motor}, {Frame,Propeller}, {Battery}, {Propeller,Battery}

}
,

whichmerges two collections into the full set of all four subassembly types. Thus
(
P2(S), ◦2

)
is a 2-Superhyperstructure

encoding both first-order subassemblies and their groupings in a single unified framework.
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1.2 Topology, Hypertopology, and Super-hypertopology

We begin with the familiar concept of a topology on a set and then show how it may be lifted first to the power-set and
subsequently to iterated power-sets, yielding the notions of hypertopology and Super-hypertopology, respectively.

Definition 1.10 (Topology). (cf. [10, 11]) Let X be a nonempty set. A topology on X is a collection

τ ⊆ P (X )

such that:

1. ∅ ∈ τ and X ∈ τ.

2.
⋃
α∈I Uα ∈ τ for any family {Uα}α∈I ⊆ τ.

3.
⋂n

k=1 Uk ∈ τ for every finite subcollection U1, . . . ,Un ∈ τ.

The pair (X, τ) is called a topological space.

Definition 1.11 (Hypertopology). (cf. [12–14]) Let H be a nonempty set and write P (H) for its power set. A
hypertopology on P (H) is any topology

τH ⊆ P
(
P (H)

)
satisfying:

1. ∅ ∈ τH and P (H) ∈ τH .

2.
⋃
β∈B Vβ ∈ τH for any family {Vβ }β∈B ⊆ τH .

3.
⋂m

j=1 Vj ∈ τH for every finite subcollection V1, . . . ,Vm ∈ τH .

The resulting pair (P (H), τH ) is called a hypertopological space.

Example 1.12 (Vietoris Hypertopology on a Two-Element Set). Let H = {a, b}. Then its power set is

P (H) =
{
∅, {a}, {b}, {a, b}

}
.

Equip H with the discrete topology τ0
H = P (H). The Vietoris hypertopology τH on P (H) is the topology generated

by the subbasis 〈
U

〉
= { A ⊆ H | A ⊆ U },

[
U

]
= { A ⊆ H | A ∩U , ∅},

for each U ∈ τ0
H . Concretely, the nontrivial subbasic opens are:〈

{a}
〉
= {∅, {a}},

[
{a}

]
= {{a}, {a, b}},〈

{b}
〉
= {∅, {b}},

[
{b}

]
= {{b}, {a, b}}.

A typical basic open set is a finite intersection of these subbasic opens. For instance,[
{a}

]
∩

[
{b}

]
= {{a, b}},

so the singleton {{a, b}} is open in τH . One checks easily that τH contains ∅ and P (H), is closed under arbitrary
unions and finite intersections, and hence

(
P (H), τH

)
is a bona fide hypertopological space.
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Definition 1.13 (Super-hypertopology). (cf. [12, 13]) Let H be a nonempty set, and define recursively

P0(H) = H, Pk+1(H) = P
(
Pk (H)

)
(k ≥ 0).

Fix n ≥ 1. A Super-hypertopology on Pn(H) is a topology τSH ⊆ P
(
Pn(H)

)
satisfying:

1. ∅ ∈ τSH and Pn(H) ∈ τSH .

2.
⋃
γ∈Γ

Wγ ∈ τSH for any family {Wγ}γ∈Γ ⊆ τSH .

3.
p⋂
i=1

Wi ∈ τSH for any finite subcollection W1, . . . ,Wp ∈ τSH .

The pair
(
Pn(H), τSH

)
is called a superhypertopological space.

Example 1.14 (2-Super-hypertopology on a Two-Point Set). Let H = {a, b}. As in Example 1.12, the first iterated
hyperspace is

P1(H) = P (H) = {∅, {a}, {b}, {a, b}},

equipped with the Vietoris hypertopology τ(1). The second iterated hyperspace is

P2(H) = P
(
P1(H)

)
,

the set of all subsets of P1(H), which has 24 = 16 elements.

We define the 2-Super-hypertopology τ(2) on P2(H) to be the Vietoris topology generated by subbasic opens of the
form 〈

U
〉
=

{
A ⊆ P1(H) | A ⊆ U

}
,

[
U

]
=

{
A ⊆ P1(H) | A ∩U , ∅

}
,

for each U ∈ τ(1).

Concrete subbasic opens. For example, take

U =
〈
{a}

〉
= {∅, {a}} ∈ τ(1) .

Then at level 2: 〈
U

〉
=

{
A ⊆ P1(H) | A ⊆ {∅, {a}}

}
= { ∅, {∅}, {{a}}, {∅, {a}}},[

U
]
=

{
A ⊆ P1(H) | A ∩ {∅, {a}} , ∅

}
= P2(H) \ { A | A ⊆ {{b}, {a, b}}}.

A basic open. A typical basic open in τ(2) is a finite intersection of such subbasic opens. For instance,〈
U

〉
∩

[
{{b}}

]
= { {{a}}, {∅, {a}}},

since {{b}} ∈ τ(1) and
[
{{b}}

]
= { A ⊆ P1(H) | {b} ∈ A}.

One verifies that τ(2) contains ∅ and P2(H), is closed under arbitrary unions and finite intersections, and thus(
P2(H), τ(2)) is a valid 2-superhypertopological space.
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Example 1.15 (3-Super-hypertopology on a Two-Point Set). Let H = {a, b}. Define iteratively

P1(H) = P (H) = {∅, {a}, {b}, {a, b}}, P2(H) = P
(
P1(H)

)
, P3(H) = P

(
P2(H)

)
.

Equip P1(H) with the Vietoris hypertopology τ(1), and P2(H) with the 2-Super-hypertopology τ(2) generated by
subbasic opens

〈U〉 = {A ⊆ P1(H) | A ⊆ U }, [U] = {A ⊆ P1(H) | A ∩U , ∅},

for all U ∈ τ(1). Concretely, set
U1 = 〈{a}〉 = {∅, {a}} ∈ τ(1),

and define the 2-level basic open
U2 = 〈U1〉 ∩

[
{{b}}

]
⊆ P2(H).

Now P3(H) carries the 3-Super-hypertopology τ(3) generated by subbasis

〈U2〉 = {X ⊆ P2(H) | X ⊆ U2}, [U2] = {X ⊆ P2(H) | X ∩U2 , ∅},

together with those arising from any open in τ(2). For instance, a typical basic open in τ(3) is

〈U2〉 ∩ [〈U1〉] =
{
X ⊆ P2(H) �� X ⊆ U2, X ∩ 〈U1〉 , ∅

}
.

One checks that τ(3) contains ∅ and P3(H), and is closed under arbitrary unions and finite intersections. Hence(
P3(H), τ(3)) is a valid 3-superhypertopological space.

1.3 Network Topology

A network topology is a graph structure (nodes and edges) describing connectivity, link characteristics, directions, and
metrics between network devices (cf. [15–17]).

Definition 1.16 (Network Topology). A network topology is a triple

G = (V, E,w),

where

• V = {v1, v2, . . . , vn} is a finite set of nodes,

• E ⊆ V × V is a set of edges, each (u, v) ∈ E indicating a direct communication link between nodes u and v,

• w : E → R>0 is an optional weight function assigning to each edge a positive real weight (for example, capacity,
latency, or cost).

If w is omitted, the network is called unweighted. The adjacency matrix A ∈ {0, 1}n×n encodes the edge set by

Ai j =



1, (vi, vj ) ∈ E,
0, otherwise.

Moreover, G is called undirected if
(u, v) ∈ E ⇐⇒ (v, u) ∈ E,

and directed otherwise. A path of length k in G is a sequence (vi0, vi1, . . . , vik ) with (vi j−1, vi j ) ∈ E for all j = 1, . . . , k.
The distance d(u, v) is the minimum length of any path from u to v (if none exists, d(u, v) = ∞).
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Example 1.17 (Small Office Network). Consider a small office network with five devices:

V = {Router, Switch, PC1, PC2, Server}.

The direct links (edges) and their round-trip latencies in milliseconds are:

E = { (Router, Switch), (Switch, PC1), (Switch, PC2), (Switch, Server), (Router, Server)},

with weight function w given by

w(Router, Switch) = 1, w(Switch, PC1) = 2, w(Switch, PC2) = 2,

w(Switch, Server) = 1, w(Router, Server) = 5.

Since all links are bidirectional with the same latency in each direction, this is an undirected, weighted network.

The adjacency matrix A ∈ {0, 1}5×5 with the node ordering {Router, Switch, PC1, PC2, Server} is

A =

*.......
,

0 1 0 0 1
1 0 1 1 1
0 1 0 0 0
0 1 0 0 0
1 1 0 0 0

+///////
-

.

A few illustrative paths and distances:

• A path from PC1 to Server is
(PC1, Switch, Server),

whose total latency is w(PC1, Switch) + w(Switch, Server) = 2 + 1 = 3. Hence d(PC1, Server) = 3.

• An alternative route is
(PC1, Switch, Router, Server),

with latency 2 + 1 + 5 = 8, which is longer and therefore not shortest.

• The distance between PC1 and PC2 is

d(PC1, PC2) = w(PC1, Switch) + w(Switch, PC2) = 2 + 2 = 4.

This example illustrates all aspects of Definition 1.16: a finite node set, an edge set encoding direct links, a positive
weight function measuring latency, an undirected structure, an explicit adjacency matrix, and computation of paths
and shortest-path distances.

Example 1.18 (Metropolitan Ring Network). Consider an undirected ring network connecting six metropolitan PoPs:

V = {A, B,C, D, E, F},

with fiber-optic links (edges)

E = {(A, B), (B,C), (C, D), (D, E), (E, F), (F, A)}.
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Assign to each link the one-way propagation delay (in milliseconds):

w(A, B) = 10, w(B,C) = 20, w(C, D) = 15,
w(D, E) = 10, w(E, F) = 20, w(F, A) = 25.

Since every link is bidirectional with the same delay each way, the network is undirected and weighted.

The adjacency matrix A ∈ {0, 1}6×6, ordered (A, B,C, D, E, F), is

A =

*.........
,

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

+/////////
-

.

For example, to send traffic from PoP C to PoP F, there are two possible simple paths:

(C, D, E, F) with total delay 15 + 10 + 20 = 45 ms,

(C, B, A, F) with total delay 20 + 10 + 25 = 55 ms.

Hence the distance d(C, F) is the minimum delay, namely 45 ms.

This ring topology exemplifies Definition 1.16 by specifying a finite node set, an edge set forming a cycle, a positive
weight function modeling link delays, the undirected structure, the adjacency matrix, and the computation of shortest-
path distances.

Theorem 1.19 (Network-Induced Topology). Let

G = (V, E,w)

be a finite, connected, undirected network with positive edge weights w : E → R>0. Define the shortest-path distance

d : V × V −→ R≥0, d(u, v) = min
{ k∑
i=1

w(ei)
��� e1, . . . , ek is a path from u to v

}
.

Then d is a metric on V . Let
τd =

{
U ⊆ V | ∀ v ∈ U ∃r > 0 : Bd (v, r) ⊆ U

}
,

where
Bd (v, r) = { u ∈ V | d(v, u) < r }

is the open ball of radius r about v. Then τd is a topology on V , called the network topology induced by G.

Proof. We split the proof into two parts.
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(1) d is a metric on V .

• Nonnegativity and definiteness: By definition each path length
∑

i w(ei) is strictly positive unless u = v, in
which case the empty path has length 0. Hence d(u, v) ≥ 0, with equality if and only if u = v.

• Symmetry: Since G is undirected, every path from u to v corresponds to a path of the same total weight from v

to u. Thus d(u, v) = d(v, u).

• Triangle inequality: If Pu→v attains the minimum length d(u, v) and Pv→w attains d(v,w), then concatenating
these two paths yields a u–w path of length d(u, v) + d(v,w). Hence

d(u,w) ≤ d(u, v) + d(v,w).

(2) τd satisfies the topology axioms.

(a) ∅ and V are open: ∅ ∈ τd trivially. For each v ∈ V , choose r = 1; then Bd (v, 1) ⊆ V . Hence V ∈ τd.

(b) Arbitrary unions: Let {Ui }i∈I ⊆ τd. Set U =
⋃

i∈I Ui. For any v ∈ U, there exists some index i with v ∈ Ui.
Since Ui is open, choose r > 0 with Bd (v, r) ⊆ Ui ⊆ U . Thus U ∈ τd.

(c) Finite intersections: Let U1,U2 ∈ τd and set U = U1 ∩U2. For v ∈ U , there exist radii r1, r2 > 0 such that

Bd (v, r1) ⊆ U1, Bd (v, r2) ⊆ U2.

Taking r = min(r1, r2) yields Bd (v, r) ⊆ U1∩U2 = U. HenceU ∈ τd. The same argument extends to any finite
intersection.

Having verified the three defining properties of Definition 1.10, we conclude that (V, τd) is a topological space. �

2 Result: Network HyperTopology and Network Super-hypertopology

Network hypertopology defines a topology on subnetworks, closed under arbitrary unions and finite intersections,
modeling relationships among subnetworks. Network Super-hypertopology recursively applies hypertopology to
higher-order power sets of subnetworks, creating multi-level hierarchical topology spaces.

Definition 2.1 (Network Hypertopology). Let G = (V, E) be a network, where V is a finite set of nodes. Equip V
with the discrete topology τV = P (V ). Denote by P (V ) its power set (the set of all subsets of nodes). The network
hypertopology τH on P (V ) is the Vietoris topology generated by the subbasis〈

U
〉
=

{
A ⊆ V �� A ⊆ U

}
,

[
U

]
=

{
A ⊆ V �� A ∩U , ∅

}
,

for all U ∈ τV . Concretely, τH is the smallest topology on P (V ) containing every 〈U〉 and [U].

Example 2.2 (Network Hypertopology on a Three-Node Network). Let G = (V, E) be the undirected network with

V = {A, B,C}, E = {(A, B), (B,C)}.

Equip V with the discrete topology τV = P (V ). Then the hyperspace of all node-subsets is

P (V ) = {∅, {A}, {B}, {C}, {A, B}, {A,C}, {B,C}, {A, B,C}}.
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Subset X X ⊆ {A, B} X ∩ {B,C} , ∅

∅ No No
{A} Yes No
{B} No Yes
{C} No Yes
{A, B} Yes Yes
{A,C} No Yes
{B,C} No Yes
{A, B,C} Yes Yes

Table 1: Membership of each node subset in the Vietoris subbasis elements 〈{A, B}〉 and [{B,C}].

The Vietoris subbasis on P (V ) consists of〈
U

〉
= { X ⊆ V | X ⊆ U },

[
U

]
= { X ⊆ V | X ∩U , ∅},

for each U ∈ τV . In particular, take U1 = {A, B} and U2 = {B,C}. The membership of each subset X ⊆ V in the two
subbasic opens can be displayed as follows:

From this table we read off:

〈{A, B}〉 = {∅, {A}, {A, B}, {A, B,C}}, [{B,C}] = {{B}, {C}, {A, B}, {A,C}, {B,C}, {A, B,C}}.

Their intersection,
〈{A, B}〉 ∩ [{B,C}] = {{A, B}, {A, B,C}},

is a basic open in the hypertopology τH . Arbitrary unions and further finite intersections of such basic opens generate
the full network hypertopology on P (V ).

Example 2.3 (Network Hypertopology on a Four-Node Star Network). Let G = (V, E) be the undirected star network
with

V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (1, 4)}.

Equip V with the discrete topology τV = P (V ). Then the hyperspace of all node-subsets is

P (V ) = { X | X ⊆ {1, 2, 3, 4}},

which has 16 elements.

By Definition 2.1, the Vietoris subbasis on P (V ) consists of

〈U〉 = { X ⊆ V | X ⊆ U }, [U] = { X ⊆ V | X ∩U , ∅},

for each U ⊆ V . Take for instance U1 = {1, 2, 4} and U2 = {1, 3}. The following table shows membership of each
subset X ⊆ V in the two subbasis opens:

From Table 2 we read:
〈{1, 2, 4}〉 = {∅, {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}},

[{1, 3}] = {{1}, {3}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}, {1, 2, 3}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}.
Their intersection,

〈{1, 2, 4}〉 ∩ [{1, 3}] = {{1}, {1, 2}, {1, 4}, {1, 2, 4}},
is a basic open in the network hypertopology τH . Arbitrary unions and further finite intersections of such basic opens
generate τH , confirming (P (V ), τH ) is a network hypertopological space.
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Subset X X ⊆ {1, 2, 4} X ∩ {1, 3} , ∅

∅ No No
{1} Yes Yes
{2} Yes No
{3} No Yes
{4} Yes No
{1, 2} Yes Yes
{1, 3} No Yes
{1, 4} Yes Yes
{2, 3} No Yes
{2, 4} Yes No
{3, 4} No Yes
{1, 2, 3} No Yes
{1, 2, 4} Yes Yes
{1, 3, 4} No Yes
{2, 3, 4} No Yes
{1, 2, 3, 4} Yes Yes

Table 2: Membership in the Vietoris subbasis sets 〈{1, 2, 4}〉 and [{1, 3}].

Theorem 2.4 (Hypertopology Axioms). The collection τH ⊆ P
(
P (V )

)
defined above satisfies:

1. ∅, P (V ) ∈ τH .

2. Closed under arbitrary unions.

3. Closed under finite intersections.

Hence
(
P (V ), τH

)
is a hypertopological space.

Proof. By construction τH is a topology (the Vietoris topology) on P (V ). In particular:

•
〈
∅
〉
= {∅} and

[
∅
]
= ∅ belong to τH , while 〈V 〉 = P (V ) and [V ] = P (V ), so ∅,P (V ) ∈ τH .

• Unions of Vietoris-basic opens remain open in the Vietoris topology.

• Finite intersections of subbasic opens 〈Ui〉 or [Ui] again have the same form:

m⋂
i=1
〈Ui〉 =

〈 m⋂
i=1

Ui
〉
,

m⋂
i=1

[Ui] =
[ m⋂
i=1

Ui
]
,

and mixed intersections similarly yield unions and intersections of the Ui, all of which lie in τV . Thus the
intersection is again in τH .

This verifies the three axioms. �
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Theorem 2.5 (Generalization of Network Topology). The map

ι : V −→ P (V ), v 7→ {v},

is a topological embedding of the discrete space (V, τV ) into the hypertopological space
(
P (V ), τH

)
. Consequently,

the classical network node-set topology is recovered as the subspace topology on ι(V ), and the network hypertopology
strictly extends it.

Proof. Let U ⊆ V be any open set in the discrete topology τV . Then

ι−1 (〈U〉) = { v ∈ V | {v} ⊆ U } = U, ι−1 ([U]
)
= { v ∈ V | {v} ∩U , ∅} = U,

showing that the preimage of every Vietoris-basic open is open in τV . Hence ι is continuous. It is clearly injective,
and the inverse ι(V ) → V is continuous by the same argument. Therefore ι is a homeomorphism onto its image ι(V ).
Thus the discrete topology on V embeds as the singleton-subspace of P (V ), and τH genuinely generalizes the original
network topology. �

Definition 2.6 (Network Super-hypertopology). Let G = (V, E) be a network with finite node setV . Define recursively

P0(V ) = V, Pk+1(V ) = P
(
Pk (V )

)
(k ≥ 0).

Equip P0(V ) with the discrete topology τ(0) = P (V ). For each n ≥ 1, let τ(n) be the Vietoris topology on Pn(V )
generated by the subbasis of sets〈

U
〉
=

{
A ⊆ Pn−1(V ) | A ⊆ U

}
,

[
U

]
=

{
A ⊆ Pn−1(V ) | A ∩U , ∅

}
,

for every open U ∈ τ(n−1). The family { (Pn(V ), τ(n))}n≥0 is called the network Super-hypertopology.

Example 2.7 (Network Super-hypertopology on a Two-Node Network). Let G = (V, E) be the simple undirected
network with

V = {A, B}, E = {(A, B)}.

We build the sequence {(Pn(V ), τ(n))}n≥0 of superhypertopological spaces.

Level 0. The base set and its discrete topology:

P0(V ) = V = {A, B}, τ(0) = P (P0(V )) = {∅, {A}, {B}, {A, B}}.

Level 1.
P1(V ) = P (V ) = {∅, {A}, {B}, {A, B}}.

The Vietoris subbasis on P1(V ) is

〈U〉 = {X ⊆ V | X ⊆ U }, [U] = {X ⊆ V | X ∩U , ∅}, U ∈ τ(0) .

For U = {A} and U ′ = {B}, membership is:

Thus 〈{A}〉 = {∅, {A}} and [{B}] = {{B}, {A, B}}. A basic open is, for example,

〈{A}〉 ∩ [{B}] = {{A, B}}.
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Subset X ⊆ V X ⊆ {A} X ∩ {B} , ∅

∅ No No
{A} Yes No
{B} No Yes
{A, B} No Yes

Table 3: Vietoris subbasis on P1(V ) for U = {A},U ′ = {B}.

X ⊆ P1(V ) X ⊆ {{A}} X ∩ {{A}} , ∅

∅ Yes No
{∅} No No
{{A}} Yes Yes
{{B}} No No
{{A, B}} No No
{∅, {A}} No Yes
{{A}, {B}} No Yes
{{A}, {A, B}} No Yes
{∅, {A}, {A, B}} No Yes
P1(V ) No Yes

Table 4: Vietoris subbasis on P2(V ) forU = {{A}}.

Level 2.
P2(V ) = P (P1(V )),

consisting of all 16 subsets of {∅, {A}, {B}, {A, B}}. Its Vietoris subbasis is

〈U〉 = {X ⊆ P1(V ) | X ⊆ U}, [U ] = {X ⊆ P1(V ) | X ∩ U , ∅},

for eachU ∈ τ(1). TakeU = {{A}}. Then:

Hence 〈{{A}}〉 = {∅, {{A}}} and [{{A}}] = {{{A}}, {∅, {A}}, {{A}, {A, B}}, . . . }. A basic open example is

〈{{A}}〉 ∩ [{{A, B}}] = {{{A}, {A, B}}}.

Each τ(n) contains ∅ and Pn(V ), and is closed under arbitrary unions and finite intersections, so {(Pn(V ), τ(n))}
defines a valid network Super-hypertopology.

Example 2.8 (Network Super-hypertopology on a Triangle Network). Let G = (V, E) be the undirected triangle
network with

V = {A, B,C}, E = {(A, B), (B,C), (C, A)}.

We construct the Super-hypertopology {(Pn(V ), τ(n))}n≥0.

Level 0.
P0(V ) = V, τ(0) = P (V ) = {∅, {A}, {B}, {C}, {A, B}, {B,C}, {C, A}, {A, B,C}}.
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Level 1.
P1(V ) = P (P0(V )),

the 8 subsets of V . The Vietoris subbasis on P1(V ) is

〈U〉 = {X ⊆ V | X ⊆ U }, [U] = {X ⊆ V | X ∩U , ∅}, U ∈ τ(0) .

Take U1 = {A, B} and U2 = {B,C}. Table 5 lists membership of each X ⊆ V in these subbasis opens.

Subset X X ⊆ {A, B} X ∩ {B,C} , ∅

∅ No No
{A} Yes No
{B} Yes Yes
{C} No Yes
{A, B} Yes Yes
{B,C} No Yes
{C, A} No No
{A, B,C} No Yes

Table 5: Level 1 Vietoris subbasis for U1 = {A, B} and U2 = {B,C}.

Hence
〈{A, B}〉 = {∅, {A}, {B}, {A, B}}, [{B,C}] = {{B}, {C}, {A, B}, {B,C}, {A, B,C}}.

A basic open is
〈{A, B}〉 ∩ [{B,C}] = {{B}, {A, B}}.

Level 2.
P2(V ) = P (P1(V )),

with 28 = 256 elements. Its Vietoris subbasis is

〈U〉 = {X ⊆ P1(V ) | X ⊆ U}, [U ] = {X ⊆ P1(V ) | X ∩ U , ∅},

for eachU ∈ τ(1). LetU = {{B}, {A, B}}. Table 6 displays membership for a selection of X ⊆ P1(V ).

X X ⊆ U X ∩U , ∅

∅ Yes No
{{B}} Yes Yes
{{A}} No No
{{A, B}} Yes Yes
{{C}} No No
{{B}, {C}} No Yes
{{A, B}, {C}} No Yes
{{B}, {A, B}} Yes Yes
P1(V ) No Yes

Table 6: Level 2 Vietoris subbasis forU = {{B}, {A, B}}.
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Thus
〈U〉 = {∅, {{B}}, {{A, B}}, {{B}, {A, B}}}, [U ] = {X | X ∩U , ∅}.

A basic open is, for example,
〈U〉 ∩ [{{A}, {C}}],

which selects those X ⊆ P1(V ) lying inU and meeting {{A}, {C}}.

Each τ(n) contains∅ andPn(V ) and is closed under arbitrary unions andfinite intersections. Therefore {(Pn(V ), τ(n))}n≥0
forms a valid network superhypertopological space.

Theorem 2.9 (Generalization of Network Hypertopology). For each n ≥ 0, the singleton-inclusion map

ηn : Pn(V ) −→ Pn+1(V ), A 7→ {A},

is a topological embedding of
(
Pn(V ), τ(n)) into

(
Pn+1(V ), τ(n+1)) . In particular, the network hypertopology τ(1)

on P1(V ) appears as the subspace topology on η0(V ), and more generally τ(n) embeds into τ(n+1). Hence the
Super-hypertopology strictly extends the hypertopology at every level.

Proof. Let U ⊆ Pn(V ) be open in τ(n). Then by definition of the Vietoris subbasis,

η−1
n

(
〈U〉

)
= { A | {A} ⊆ U } = U, η−1

n

(
[U]

)
= { A | {A} ∩U , ∅} = U,

showing that ηn is continuous. It is injective, and its inverse on ηn(Pn(V )) is continuous by the same reasoning. Thus
ηn is a homeomorphism onto its image. �

Theorem 2.10 (Super-hypertopology Axioms). For each n ≥ 1, the Vietoris topology τ(n) on Pn(V ) satisfies:

1. ∅, Pn(V ) ∈ τ(n).

2. Closed under arbitrary unions.

3. Closed under finite intersections.

Consequently, { (Pn(V ), τ(n))}n≥1 forms a valid superhypertopological space.

Proof. We argue by induction on n.

Base case (n = 1): τ(1) is the standard Vietoris (network hypertopology) on P1(V ) = P (V ). It is well-known to
contain ∅ and P (V ), be closed under arbitrary unions of Vietoris-basic opens, and closed under finite intersections of
subbasic opens 〈U〉 and [U].

Inductive step: Assume τ(n) on Pn(V ) satisfies the three axioms. By definition, τ(n+1) is generated by the subbasis
{〈U〉, [U] | U ∈ τ(n) }. Any union of such subbasic opens is open by construction. A finite intersection of subbasis
elements has the form〈

U1
〉
∩ · · · ∩

〈
Um

〉
=

〈
U1 ∩ · · · ∩Um

〉
,

[
U1

]
∩ · · · ∩

[
Um

]
=

[
U1 ∩ · · · ∩Um

]
,

and mixed intersections likewise reduce to unions and intersections of finitely many Ui ∈ τ
(n). Since τ(n) is closed

under these operations, the resulting set lies in the subbasis, hence in τ(n+1). Finally, 〈∅〉 = {∅} and [∅] = ∅ are in
τ(n+1), and 〈Pn(V )〉 = [Pn(V )] = Pn+1(V ). Thus τ(n+1) satisfies all axioms, completing the induction. �
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3 Conclusion and Future Work

In this work, we have presented the concepts of Network Hypertopology and Network Super-hypertopology, which
extend the traditional graph-based network topology into hierarchically structured topologies on node power sets.

For future research, we intend to integrate uncertainty-handling frameworks such as Fuzzy Sets [18], Intuitionistic
Fuzzy Sets [19], Hesitant Fuzzy Sets [20], Picture Fuzzy Sets [21], HyperFuzzy Sets [22], Neutrosophic Sets [23,
24], Double-valued Neutrosophic Sets [25], and Plithogenic Sets [26] to model multi-valued relationships under
uncertainty. We also plan to conduct computational experiments to demonstrate practical applications and to validate
the theoretical frameworks introduced here. Additionally, we envision further extensions employing HyperGraphs [27]
and SuperHyperGraphs [28] to deepen and broaden the scope of our approach.
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