
Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 58-72 (2026)

Received
December 05,
2025

Revised
January 20, 2026

Accepted
January 25, 2026

Published
January 31, 2026

Keywords
Cryptography,
Cryptanalysis,
Discrete log
problem, Index
calculus method,
Gaussian Integer
Method, Algo-
rithms.

An Analytical Study of the Gaus-
sian Integer Method of Index
Calculus for the Discrete Loga-
rithm Problem in a Prime Field

Brij Mohan †

†Department of Mathematics, Hansraj College, University of

Delhi, Delhi-110007, India.

Corresponding Author: brijmohan6414@gmail.com

ORCID: https://orcid.org/0000-0002-0400-4186

DOI/url: https://journalmanager.transitus.in/index.php/jamss

1 Abstract

This research investigates application of the Gaussian integer method under the index calculus approach
for discrete logarithm problem in a prime field. For a prime field GF (p) of prime order p, and g a prim-
itive element of GF (p), the discrete logarithm base g of an arbitrary non-zero y ∈ GF (p) is an integer
x, 0 ≤ x ≤ p − 2, such that gx = y in GF (p). It explored the different cryptographic applications and
schemes, and analyzes the index calculus method with appropriate examples. This work showcases different
algorithms to simplify the discrete logarithmic problem with their advantages and backdraws. The security
of many real-world cryptographic schemes depends on the difficulty of computing discrete logarithms in
large finite fields. This project is a study of the discrete logarithm problem in prime field with Gaussian
Integer Method of Index Calculus and implementation of this method in NTL(Number Theory Library) with
C++ programming language, also comparison with other implemented methods to solve discrete logarithms.

2026 @ Transitus Publishing 58 Mohan B.

https://orcid.org/0000-0002-0400-4186
https://journalmanager.transitus.in/index.php/jamss

Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 58-72 (2026)

2 Introduction

Let GF (p) be a prime field of order p, where p is a prime. Given g, a primitive element of GF (p), and an
arbitrary y ∈ GF (p), the discrete logarithm of y base g is defined as

logg y = x⇔ gx = y ∈ GF (p); 0 ≤ x ≤ p− 2. (1)

A fundamental difference between discrete logarithm and real logarithm is that the magnitude of y gives us
no information about the magnitude of x. The most obvious method of finding the discrete logarithm of y is
to simply keep raising g to different powers until we find the specific exponent x such that gx = y in GF (p).
However, if p is very large, this method is computationally infeasible, and while faster algorithms have been
developed, the discrete logarithm problem remains intractable (for almost all y ∈ GF (p)) in very large field
GF (p). This intractability makes the discrete logarithm problem useful in cryptographic applications, and
many such applications have been developed, and implemented. These real-world cryptographic implemen-
tations have raised the stakes on the discrete logarithm problem, making the research of faster algorithms
to solve the problem a matter of financial, and even national security-it’s now imperative to know in how
large a field the problem is solvable.
Discrete logarithms in large finite field Fq come into play in cryptography because they appear to have
the attributes of a one-way function. It’s inverse function (“discrete exponentiation problem” is to find y
such that y = gx where x is given integer and g is primitive element of finite field Fq) is relatively easy
to compute. “square-and-multiply” method can compute gx ∈ Fq with at most 2 log2 q multiplications and
modular reductions. For example,

g17 = (((g2)2)2)2.g (2)

and computational blowup can be avoided by taking a modular reduction after each multiplication.

3 Cryptography Applications

The simplest cryptographic application that relies on the difficulty of computing discrete logarithms concerns
user authentication – for example, verifying passwords on a multi-user computer.It would be very risky to
have a file stored in the computer that contained every user’s password, yet the computer needs some way
to verify the legitimacy of a password. Instead of storing the password xi for each user i, we can choose a
finite field Fq and a primitive element g, and store the values gxi = yi ∈ Fq for each user i. To authenticate
a user’s password, the computer first calculates gxi , then compares the result for a match on the stored file.
However, even if someone gains access to the stored file, in order to impersonate user i, they would first
have to calculate the discrete logarithm of yi in Fq.

3.1 Diffie and Hellman Problem

The problem with classical, private-key cryptography has always been that, if two user “A” and “B” wanted
to communicate privately over a public, insecure channel, they first needed, in some private and secure way,
to agree on a shared secret key, which they would both use to encipher and decipher their message to each
other.
Diffie and Hellman [5] have invented a key-exchange based on exponentiation in finite field. In it, a finite
field Fq and a primitive element g ∈ Fq are chosen and made public. User A and B who wish to communicate
using some standard encryption method, but who do not have a common key for that system, choose random
integer a and b, respectively, with 2 ≤ a, b ≤ q − 2. Then user A transmits ga to B over a public channel,
while user B transmits gb to A. The common key is then taken to be gab, which A can be compute by raising

2026 @ Transitus Publishing 59 Mohan B.

Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 58-72 (2026)

the received gb to the a power(which only he knows), and which B forms by raising ga to the b power.
It is clear that an efficient discrete logarithm algorithm would make this scheme insecure, since the publicly
transmitted ga would enable the cryptanalyst to determine a, and he could then determine the key used by A
and B. Diffie and Hellman [5] have even conjectured that breaking their scheme is equivalent in difficulty to
computing discrete logarithms. This conjecture remains unproved, and so we cannot exclude the possibility
that there might be some way to generate gab from knowledge of ga and gb only, without computing either
a or b, although it seems unlikely that such a method exists.

3.2 ElGamal Digital Signature Scheme

In 1985, ElGamal [9] proposed a public-key cryptosystem and digital signature scheme in which the public
and private keys are the same as in the Diffie-Hellman system. User B can send a message m ∈ Fq to user A
by choosing an integer k, 2 ≤ k ≤ q − 2 (and it’s important to choose a different k for each message), then
sending the pair (gk,myA

k) to user A. User A knows −xA (mod q-1), and can calculate yA
−k as (gk)−xA to

recover the message m = (myA
k)yA

−k.
To implement the ElGamal digital signature scheme, we must restrict ourselves to field of prime order p (see
e.g. the description in [10]).To sign a message m, 1 ≤ m ≤ p − 1, a user A will provide a pair of integers
(r, s), 1 ≤ r, s ≤ p− 1, that satisfy the following properties: a knowledge of xA is necessary to produce the
signature; anyone who know m can use yA to verify the signature; and any alteration of the message m after
the signature was produced will nullify the signature. To calculate r and s, user A chooses an integer k,
1 ≤ k ≤ p− 2, such that (k, p− 1)=1 (again, we must use a different k for each message) and calculates.
r ≡ gk mod p, and
s ≡ k−1(m− xAr) mod p− 1; ((k, p− 1) = 1⇒ ∃ k−1 (mod p− 1)).
Thus, these r, s satisfy

gm ≡ gxAr+ks ≡ (gxA)r(gk)s) ≡ (yA)rrs (mod p) (3)

so to verify the signature, anyone can calculate gm and (yA)rrs (mod p), and check that they are equal.

4 Index Calculus Method

The fastest method for computing discrete logarithms is known as the index calculus method. The running
time of the algorithm has the form

L[q, α, c] = exp((c+ o(1))(ln q)α(ln ln q)1−α), 0 < α < 1 (4)

where c is constant (o(1)→ 0, as q →∞), which is known as sub-exponential (if α were 0, the time would
be polynomial in ln q ifα were 1, it would be fully exponential in ln q).

4.1 Method in Prime Field

For the field Fp, p prime, whose elements are represented by the set {0,1,..,p-1}, with arithmetic performed
modulo p: Let S (the factor base), be the set of all prime integers less than or equal some bound b. An
element of Fp

∗ = Fp − {0} is said to be smooth with respect to b if, all of its factor are contained in S.
The algorithm proceeds in three stage. In the first stage, we take a random integer z in [1, p− 2], calculate
gz (mod p), and see if gz (mod p) is smooth. if it is smooth, say

gz mod p =

|S|∏
i=1

pi
αi , pi ∈ S, (5)

2026 @ Transitus Publishing 60 Mohan B.

Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 58-72 (2026)

then we get an equation in the discrete logarithms to the base g:

z ≡
|S|∑
i=1

αi logg pi (mod p− 1), (6)

where z and all of the αi are known. We continue this process until we have generated more than |S|
equations. In stage two of the algorithm, we solve the system of equations (5.0.1) to find a unique solution
for the logg pi. Then in stage three, we are able to find the discrete logarithm of any y ∈ Fp∗. To do this,
we take z’sat random again, until we find a z such that ygz (mod p) is smooth. When we find such a z, we
get an equation

logg y ≡ −z +

|S|∑
i=1

αi. logg pi(mod p− 1), (7)

where everything on the right hand side is known.

4.2 Example

For example, in F37 with g = 5, let S={2,3} and suppose we want to find log5 17.
Stage 1:
Try z = 7 : 57 ≡ 18 (mod 37) = 2 · 32 ⇒ log5 2 + 2 · log5 3 ≡ (mod36).
Try z = 6 : 56 ≡ 11 (mod 37). Not smooth.
Try z = 14 : 514 ≡ 28 (mod 37). Not smooth.
Try z = 31 : 531 ≡ 24 (mod 37) = 23 · 3⇒ 3 · log5 2 + log5 3 ≡ 31 (mod 36).
Stage 2:
Subtracting 3 times the first equation from the second, and using
5−1 ≡ 29 (mod 36),we get the solution log5 2 = 11 and log5 3 = 34.
Stage 3:
We want to find log5 17.
Try z = 24 : 17 · 524 ≡ 35 (mod 37). Not smooth.
Try z = 15 : 15 · 515 ≡ 12 (mod37) = 22 · 3⇒ log5 17 ≡ −15 + 2 · 11 + 1 · 34 ≡ 5 (mod 36).
Result :
log5 17 ≡ 5 (mod 36).

5 Gaussian Integer Method

Coppersmith, Odlyzko, and Schroeppel [1] proposed three algorithms for finding discrete logarithms in
prime fields Fp, each of which has a run time L[p, 12 , c = 1] for the first and second stages, and a run time
of L[p, 12 , c = 1

2] for stage three. One of these algorithms called the Gaussian integer method, has proved to
be the most practical, and the most important in the way it has spurred the development of other discrete
logarithm algorithms.
LaMacchia and Odlyzko [2] successfully implemented the algorithm in a prime field of order ≈ 1058 (and
went halfway through stage two with a prime ≈ 1067). Although their primary motivation was to obtain
empirical results on sparse matrix techniques [8], the implementation with a 58 digit prime also broke an
authentication scheme that Sun Microcomputers, Inc. had implemented in that field as part of their Network
Field System.
The Gaussian integer method was inspired by a subexponential algorithm that ElGamal [12] invented for
finding discrete logarithms in field Fp2 , p → ∞. The idea is to perform the index calculus algorithm in an
isomorphic copy of Fp2 .

2026 @ Transitus Publishing 61 Mohan B.

Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 58-72 (2026)

5.1 Basic Method

In the Gaussian integer method, we use a very simple mapping of Fp to a subset of Z×Z. Let r be the small
negative integer that is also a quadratic residue modulo p – preferably r ∈ {−1,−2,−3,−7,−11,−19,−43, ..},
so we can work in a unique factorization domain, though the algorithm can be modified to work in a non-
UFD. (If p ≡ 1 mod 4, we can take r = −1.) Let W be an integer such that W 2 ≡ r mod p, and let
w represent the complex number

√
r. Find two integer T, V <

√
p such that T 2 ≡ rV 2 mod p (these

T and V can easily find by the ExtendedEuclideanalgorithm), and let p′ = T + V w. Then the norm

N(p′) = p⇒ (p′) is a maximal ideal of Z[w] and Z[w]
(p′) is isomorphic to Fp. In fact, φ : Z[w](p′) → Fp defined by

φ(e+ fw) = e+ fW mod p is an isomorphism.

Choose a complex prime G = a1 + a2w that generates the group of units (Z[w](p′))∗ – this G will be the new
base for logarithms. Mapping complex numbers e+ fw to real numbers e+ fW , and the base G = a1 + a2
to g = a1 + a2W , preserves logarithms. Let the smoothness bound b = L[p, 12 ,

1
2], and we let the factor base

S contain the integer V, all real primes ≤ b, and all complex primes x + yw ∈ Z[w] whose norm is ≤ b
(including real primes that factor into two complex primes).
Now to generate logarithm equations in stage one, we will sieve through pairs of small (positive or negative)
integers (c1, c2) looking for pairs that makes c1V − c2T smooth with respect to the real primes in factor base
S. (A pair (kc1, kc2), for constant k, will gives us the same equation as (c1, c2) so we should avoid using
such multiples, e.g. by using only relatively prime pairs). For each (c1, c2) that makes (c1T, c2V) smooth,
we check to see if (c1 + c2w) is smooth with respect to the complex primes in the factor base. (Since the
norm of a product quadratic integer is the product of their norms, we can test (c1 + c2w) for smoothness
by testing it’s norm for smoothness with respect to the norms of complex elements in the factor base.) If
(c1 + c2w) is also smooth, then we can get an equation among the discrete logarithms base G of elements in
the factor base, because

c1V − c2T = V (c1 + c2w)− c2(T + V w) ≡ V (c1 + c2w) mod p′. (8)

If c1T −c2V and c1 +c2w are smooth with respect real and complex prime, respectively in factor base. Then

(c1T − c2V) =

t∏
i=1

pi
mi , (9)

(c1 + c2w) =

t′∏
i=1

(xi + yiw)ni , (10)

taking logarithm for both equations with base G

logG(c1T − c2V) =

t∑
i=1

mi · logG pi, (11)

logG(c1 + c2w) = logG V + ni

t′∑
i=1

logG(xi + yiw). (12)

6 Lanczos Algorithms

Suppose we have the system
Rx = b. (13)

2026 @ Transitus Publishing 62 Mohan B.

Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 58-72 (2026)

The lanczos algorithm over the real field works for a positive definite symmetric matrix. In our case R is
not symmetric or even square. Hence we apply Lanczos to normal equations

RTRx = RT b, (14)

rather than directly to equation (14). Suppose A = RTR, b̃ = RT b, then the system becomes Ax = b̃.

6.1 Standard Lanczos method

Suppose A = RTR is a symmetric positive definite matrix over GF(2), b̃ = RT b and wi’s are vectors, then
the stndard lanczos algorithm solves Ax = b̃ by iterating

wi = Awi−1 −
i−1∑
j=0

cijwj ; (i > 0), (15)

where

cij =
wTj A

2wi−1

wtjA
2wj

, (16)

untill wi = 0.
By the symmetry of A, we get the following relation :

wTi Awj = 0 (i 6= j) (17)

The vectors w0, w1, w2.......wiare eventually linearly dependent, namely

i∑
j=0

ajwj = 0 where ai 6=0.

Premultiplying by wTi A and use(4) to find aiw
T
i Awi = 0. By positivedefiniteness, wi = 0. Let m denotes the

first value of i such that wi = 0. If we define

x =
m−1∑
j=0

wTj b̃

wTj Awj
wj , (18)

then based on equation (15) and (16)

Ax− b ε {Aw0, Aw1,Awm−1, b̄} ⊆ {w0, w1......wm−1}.

By construction, wTj Ax = wTj b̃ for 0 ≤ j ≤ m− 1. Hence (Ax− b̃)T (Ax− b̃) = 0 and Ax = b̃.
It can be observed that equations (2) and (3) require adding suitable multiples of all earlier wj when
computing wi. The terms vanish when j < i− 2, because of the following relation:

wTj A
2wi−1 = (Awj)

TAwi−1

= (wj+1 +

j∑
k=0

cj+1,kwk)
TAwi−1

= 0 (j < i− 2). (19)

Hence equation (15) simplifies to

wi+1 = Awi − ci+1,iwi − ci+1,i−1wi−1 (i ≥ 1), (20)

2026 @ Transitus Publishing 63 Mohan B.

Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 58-72 (2026)

where the coefficient ci+1,i and ci+1,i−1 can be computed as follows:

ci+1,i =
(Awi)

T (Awi)

wTi Awi
,

ci+1,i−1 =
(Awi−1)

T (Awi)

wTi−1Awi−1
. (21)

6.2 The improved Lanczos algorithm:

Now we would go back the problems we aim for,namely equation (14). So we make some substitutions. If
we substitute RTR as A into the equations described above, and define

p̃i = Rwi q̃i = RT p̃i,
and

αi = q̃i
T qi, βi = q̃i

Twi, θi = q̃i
T q̃i−1,

then the equation (20) can be expressed as follows:

wi+1 = ˜qi−1 −
αi
βi
wi −

θi
αi−1

wi−1 (22)

If we define τi = wTi b̃ and λi = q̃Ti b̃, we have

τi+1 = wTi+1b̃ = λi −
αi
βi
τi −

θi
αi−1

τi−1. (23)

By substituting equation (23) into the equation (18) and denote φi = p̃Ti p̃i, xi can be updated from the
following:

xi = xi−1 +
τi
φi
wi.

Combining all above equations with complicated mathematical derivations with algorithm reorganization
the sketch of the Improved Lanczos algorithm can be depicted in Algorithm 1.

ALGORITHM 1: The Improved Lanczos Algorithm

1 w−1 = w0 = RT b;

2 p̃−1 = p̃0 = Rw0, q̃−1 = q̃0 = RT p̃0;

3 α0 = q̃T0 q̃0, β0 = q̃T0 w0, θ0 = q̃T0 q̃−1;

4 φ0 = p̃T0 p̃0, λ0 = q̃T0 b̃, τ0 = wT0 b̃;

5 x0 =
τ0
φ0

; w1 = q0 −
α0

β0
w0;

6 for i=1,2,3,......do

7 p̃i = Rwi;

8 q̃i = RT p̃i;

9 b̃ = RT b;

2026 @ Transitus Publishing 64 Mohan B.

Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 58-72 (2026)

9 αi = q̃Ti q̃i;

10 βi = q̃Ti wi;

11 θi = q̃Ti q̃i−1;

12 φi = p̃Ti p̃i;

13 λ(i) = q̃Ti b̃;

14 xi = xi−1 +
τi
φ i
wi

15 wi+1 = q̃i−1 −
αi
βi
wi −

θi
αi−1

wi−1;

16 τi+1 = λi −
αi
βi
τi −

θi
αi−1

τi−1

17 end for

Parallel Steps :
Under the assumptions, the improved Lanczos method can be efficiently parrallelized as follows:

• The inner product of a single iteration step (9),(10),(11),(12) and (13) are independent(parallel).

• The matrix vector multiplications of a single iteration step (7) and (8) are independent.

• The vector updates (14),(15) and (16) are independent.

6.3 Drawbacks of Lanczos algorithm

• The time complexity of the standarnd Lanczos algorithm is O(n3).

• It is possible to have wTi Awi = 0 during the iteration. In this case, the algorithm can not continue
and the algorithm fails.

Assume we apply this algorithm to a field K, if k >> n then we can ignore this risk. But we want to
apply this algorithm to GF(2), which only has two elements and half of the vectors are A-orthogonal to
themselves, so we need to modify our algorithms. So we turn our attention to the block-lanczos algorithm,
which iterates on block vectors instead of single vectors.

7 Block Lanczos Algorithms

Let A be a symmetric matrix over a field K. Block Lanczos algorithms modify Lanczos algorithm to produce
a sequence of subspaces {ωi}m−1i=0 of Kn which are pairwise A-orthogonal. The condition wTi Awi 6= 0 in
Lanczos algorithm is replaced by a requirement that no nonzero vector in ωi be A-orthogonal to all of ωi.

2026 @ Transitus Publishing 65 Mohan B.

Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 58-72 (2026)

7.1 Montgomery’s block-Lanczos algorithm

Montgomery’s block-Lanczos algorithm was proposed by P.L. Montgomery’s in 1995. It is an extension of
the standard Lanczos algorithm over GF(2). There are some good properties over GF(2), for example, we
can apply matrix to N vectors at a time (N is the length of computer world, typically equals to 32 or 64
), and also do bitwise operations. It uses explicit symmetrization. In order to decrease the possibility of
breakdown, first we build set of vectorspaces instead of set of vectors.

Notation:-
If ω is a subspace of Kn, then Θ(ω) represents a vector in ω or a matrix with column vectors in ω.

Definition 7.1. If A denotes a symmetric n× n matrix over a field K. Two vectors v,w ∈ Kn is said to be
A-orthogonal if vTAw = 0.

Definition 7.2. A subspace ω ⊆ Kn is said to be A-invertible if it has a basis W of column vectors such
that W TAW is invertible.

The property of being A-invertible is independent of the choice of basis, since any two bases for ω are
related by an invertible transformation. If ω is A-invertible, then any u∈ Kn can be uniquely written as v+w
where w∈ ω and ωTAv=0. Indeed, if the columns of W are a basis for ω, then w=W (W TAW)−1W TAu.
Here we are generalizing the subspaces as ωi is A-invertible,

ωTj Aωi = {0} (i 6= j),

Aω ⊆ ω;ω = ω0 + ω1 + · · ·ωm−1. (24)

Given b ∈ ω, we can construct an x ∈ ω such that Ax=b. Let X=
m−1∑
j=0

wj , where wj ∈ ωj is chosen so that

Awj − b is orthogonal to all of wj . If the columns of Wj form a basis for ωj , then

x =

m−1∑
j=0

Wj(W
T
j AWj)

−1W T
j b, (25)

generalizes (18).
Fix N > 0. At each step i, we will have an n × N matrix Vi which is A-orthogonal to all earlier Wj . The
initial V0 is arbitrary. We select Wi using as many columns of Vi as we can, subject to the requirement that
Wi be A-invertible. More precisely, we try to replace the Lanczos iterations by

Wi = ViSi,

Vi+1 = AWiS
T
i + Vi −

i∑
j=0

WjCi+1,j (i ≥ 0), (26)

ωi = 〈Wi〉.

Stop iterating if V T
i AVi = 0, say for i=m.

Here Si is an N ×Ni projection matrix chosen so that W T
i AWi is invertible while making Ni ≤ N as large

as possible. The matrix Si should be zero except for exactly one per column and atmost one per row. These
ensure that STi Si = INi and that STi Si is a submatrix of IN reflecting the vectors selected from Vi.

Equation (26) for Vi+1 tries to generalize (15) and (16) while ensuring W T
j AVi+1 = {0}, for j ≤ i if

the earlier Wj exhibit the desired A-orthogonality. We use

Ci+1,j = (W T
j AWj)

−1W T
j A(AWiS

T
i + Vi). (27)

2026 @ Transitus Publishing 66 Mohan B.

Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 58-72 (2026)

Theorem 7.1. Equations (26) and (27) imply (24) if Vm = 0.
Furthermore,

W T
j AVi = 0 (0 ≤ j < i ≤ m). (28)

Proof:- The selection of Si ensures ωi = 〈Wi〉 is A-invertible. The equation W T
j AVi = 0 implies W T

j AWi = 0

since Wi = ViSi. It also implies W T
i AWj = 0 since A is symmetric.

We prove (28) by induction on i. Let 0≤ k < m and assume (28) holds for 0 ≤ j < i ≤ k. This
assumption is vacuously true when k= 0. If 0 ≤ j ≤ k, then

W T
j AVk+1 = W T

j A(AWkS
T
k + Vk)−

k∑
i=0

W T
j AWiCk+1,i

= W T
j A(AWkS

T
k + Vk)−W T

j AWjCk+1,j = 0

by induction and choice (27) of Ck+1,j.
A corollary to (28) is ωTj Aωi = {0} if i 6= j.
Post-multiply the defining equation (26) for Vi+1 by Si.

Vi+1Si = AWiS
T
i Si + ViSi −

i∑
j=0

WjCi+1,jSi

= AWi +Wi −
i∑

j=0

WjCi+1,jSi

This and equation (26) give

AWi = Vi+1Si −Wi +
i∑

j=0

WjCi+1,jSi = Vi+1Si + Θ(ω), (29)

Vi = Vi+1 −AWiS
T
i +

i∑
j=0

WjCi+1,j = Vi+1 −AWiS
T
i + Θ(ω).

By hypothesis,Vm = 0 = Θ(ω). By backward induction and equation (29), AWi = Θ(ω) for 0≤ i ≤ m − 1.
Hence Aω ⊆ ω.
The subspaces generated ωi from equation (26) have dimension atmost N . This is immediate from equation
(26) since ωi = 〈ViSi〉 and Vi is an n×N matrix.

Simplifying the Block Lanczos Recurrence
Here we would like to optimize the computation of Vi+1 in (26) using the invariant (28). We have some
freedom in the choice of Si since 〈Vi〉 may have multiple bases.
If j < i, then the term W T

j AVi in (27) vanishes by (28). We attemt to simplify W T
j A

2Wi, using (26) and
(28).

W T
j A

2Wi = (STj Sj)W
T
j A

2Wi

= STj (AWjS
T
j)TAWi

= STj (Vj+1 − Vj + Θ(ω0 + ω1 +ωj)
TAWi (j < i) (30)

= STj V
T
j+1AWi −W T

j AWi = STj V
T
j+1AWi

2026 @ Transitus Publishing 67 Mohan B.

Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 58-72 (2026)

If Sj+1 = IN (so that Vj+1 = Wj+1) and if (j < i− 1),then (30) vanishes since W T
j+1AWi = 0.

In the other cases equation (30) does not similarly satisfy. We may be unable to force Cji+1 = 0 for
j ≤ i− 3. Then the recurrence (26) will simplify to

Vi+1 = AWiS
T
i + Vi −WiCi+1,i −Wi−1Ci+1,i−1 −Wi−2Ci+1,i−2 (i ≥ 2). (31)

Equation (31) remains valid for i=0 and i=1 if we define Vj = 0 and Wj = 0 for j < 0.
To achieve equation (31), we require that the equation (30) vanish whenever j ≤ i− 3. That is, we require
Vj+1 to be A-orthogonal to Wj+3 through Wm. We achieve this by requiring that all vectors in Vj+1 be used
either in Wj+1 or in Wj+2. More precisely we require

〈Vj+1〉 ⊆ ω0 + ω1 +ωj+2 (j ≥ −1). (32)

Assuming the equation (32) we try to simplify the matrix equation (31). Denote

W inv
i = Si(W

T
i AWi)

−1STi = Si(S
T
i V

T
i AViSi)

−1STi (33)

Each W inv
i is a symmetric N ×N matrix. Eliminating all references to Wi = ViSi, we get

Vi+1 = AViSiS
T
i + Vi − ViSiCi+1,i − Vi−1Si−1Ci+1,i−1 − Vi−2Si−2Ci+1,i−2

= AViSiS
T
i + Vi − ViW inv

i V T
i A(AViSiS

T
i + Vi)

− Vi−1W
inv
i−1V

T
i−1A

2ViSiS
T
i − Vi−2W inv

i−2V
T
i−2A

2ViSiS
T
i . (34)

This equation appears to require four inner products: V T
i AVi, V

T
i A

2Vi, V
T
i−1A

2Vi and V T
i−2A

2Vi. We can
express the latter two inner products in terms of first two using equations (27), (28), (29), and (31).

STi−1V
T
i−1A

2Vi = (AWi−1)
TAVi = (ViSi−1 + Θ(ω0 + ω1 +ωi−1))

TAVi = STi−1V
T
i AVi

STi−2V
T
i−2A

2Vi = (AWi−2)
TAVi = (Vi−1Si−2 + Θ(ω0 + ω1 +ωi−2))

TAVi = STi−2V
T
i−1AVi

= STi−2V
T
i−1A(AWi−1S

T
i−1 + Vi−1 −Wi−1Ci,i−1 + Θ(ωi−2 + ωi−3))

= STi−2V
T
i−1A(IN − Vi−1W inv

i−1V
T
i−1A)(AWi−1S

T
i−1 + Vi−1)

= STi−2(IN − V T
i−1AVi−1W

inv
i−1)(V T

i−1A
2Vi−1Si−1S

T
i−1 + V T

i−1AVi−1)

Hence equation (34) simplifies to

Vi+1 = AViSiS
T
i + ViDi+1 + Vi−1Ei+1 + Vi−1Fi+1, (35)

for i ≥ 0, where

Di+1 = IN −W inv
i (V T

i A
2ViSiS

T
i + V T

i AVi);

Ei+1 = −W inv
i−1V

T
i AViSiS

T
i ; (36)

Fi+1 = −W inv
i−2(IN − V T

i−1AVi−1W
inv
i−1)(V T

i−1A
2Vi−1Si−1S

T
i−1 + V T

i−1AVi−1)SiS
T
i

We define W inv
j and Vj to be zero and Sj to be IN for j < 0. For mathematical purpose sketch of the

Montgomery’s Block-Lanczos method is described in Algorithm 2.
Selecting Si and Wi

Si and Wi = ViSi should be selected in the way such that the following conditions should satisfy.

• W T
i AWi must be invertible.

2026 @ Transitus Publishing 68 Mohan B.

Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 58-72 (2026)

• rank Wi must be as large as possible.

• Any column of Vi−1 which was not used in Wi−1 must be used now.

Algorithm(3) describes the procedure for selecting Si and Wi.

ALGORITHM 2: Montgomery’s block-Lanczos algorithm

Inputs:A,b and V0, where A is symmetric,invertible and V0is arbitrary.
Cmt.Si is an N ×Ni projection matrix (Ni < N) to make W T

i AWi invertible.
Cmt. Si has exactly 1 per column and atmost 1 per row. Each W inv

i is a symmetric N × N matrix. we
define W inv

i and Vjto be 0 and Sj to be IN for j < 0.
Cmt.How to select SiS

T
i and W inv

i can be found in Algorithm 3.
Outputs: The solution vector x.

While(i = 0 to m) and(V T
i AVi 6= 0) do

Di+1 = IN −W inv
i (V T

i A
2ViSiS

T
i + V T

i AVi);
Ei+1 = −W inv

i−1V
T
i AViSiS

T
i ;

Fi+1 = −W inv
i−2(IN − V T

i−1AVi−1W
inv
i−1)(V T

i−1A
2Vi−1Si−1S

T
i−1 + V T

i−1AVi−1)SiS
T
i

Vi+1 = AViSiS
T
i + ViDi+1 + Vi−1Ei+1 + Vi−1Fi+1

end while
if i == m then
Calculate x.

x =

j=m−1∑
j=0

VjW
inv
j V T

j ;

end if
if V T

i AVi 6= 0 then
Program failure exit.
end if

ALGORITHM 3: Select Si and W inv
i

Inputs: T = V T
i AVi and Si−1, (where A and hence T)is symmetric.

Outputs: Set S for diagonal of SiS
T
i , and W inv

i = Si(S
T
i TSi)

−1STi .
Construct an N × 2N block matrix M , with T on the left and IN on the right.
Cmt. Algorithm performs row operations on M. It may zero an entire row.
Number columns of T as c1,c2,......cN, with columns in Si−1 coming last.
Initialize S=0.
Cmt. S has the columns selected from Vi for Wi.

for j=1 to N do
for k = j; k <= N and M [cj, cj] = 0; k + + do

if M [ck, cj] 6= 0 then
Exchange rows cj and ck of M.

end if
end for

if M [cj, cj] 6=0 then
S = S ∪ {cj}

2026 @ Transitus Publishing 69 Mohan B.

Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 58-72 (2026)

Divide row cj of M by M [cj, cj].
Add multiples of row cj to other rows of M, to zero rest of column cj.

else
for k = j; k <= N and M [cj, cj +N] = 0; k + + do

if M [ck, cj +N] 6= 0 then
Exchange rows cj and ck of M.

end if
end for

assert(M [cj, cj +N] 6= 0)
Add multiples of row cj to other rows, to zero rest of column cj+N.

end if
end for
copy right half of M into W inv

i .

7.2 Improved Montgomery’s block-Lanczos algorithm

It is the extension of Montgomery’s block-Lanczos algorithm. Original Montgomery’s algorithm uses an ex-
plicit method to symmetrize the input with the complexity of O(n3). The improved Montgomery’s algorithm
uses an implicit symmetrization process to avoid the explicit symmetrization process with the complexity of
O(n3). It also proposes some initial strategies to find the solutions.

ALGORITHM 4: Improved Montgomery’s block-Lanczos algorithm

Inputs: A,b and V0,where A is not necessarily symmetric and V0is arbitrary.
Cmt.Si is an N ×Ni projection matrix (Ni < N) to make W T

i AWiinvertible.
Cmt. Si has exactly 1 per row.Each W inv

i is a symmetric N ×N matrix .we define W inv
i and Vjto be 0 and

Sj to beIN for j < 0.
Cmt.How to select SiS

T
i and W inv

i can be found in previous Algorithm 3.
Outputs: The solution vector x.

While(i = 0 to m) and(V T
i A

TAVi 6= 0) do
Di+1 = IN −W inv

i (V T
i A

T (A(AT (AViSiS
T
i))) + V T

i A
TA(Vi));

Ei+1 = −W inv
i−1V

T
i A

T (AViSiS
T
i);

Fi+1 = −W inv
i−2(IN−V T

i−1A
T (AVi−1W

inv
i−1)) (V T

i−1A
T (A(AT (AVi−1Si−1S

T
i−1)))+V T

i−1A
T (AVi−1)SiS

T
i)

Vi+1 = AT (AViSiS
T
i) + ViDi+1 + Vi−1Ei+1 + Vi−1Fi+1 end while

if i == m then
Calculate x.

x =

j=m−1∑
j=0

VjW
inv
j V T

j ;

end if
if V T

i AVi 6= 0 then
Program failure exit.
end if

7.3 Drawbacks of Montgomery’s block-Lanczos algorithm

No matter which symmetrizing methods we use in Montgomery’s Block-Lanczos algorithm, implicit or ex-
plicit, the symmetrization process significantly reduces the solutions, since over GF(2) the rank of the

2026 @ Transitus Publishing 70 Mohan B.

Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 58-72 (2026)

product ATA in general much less than that of A. This study implemented the following two algorithms:

Standard Lanczos algorithm:
This is not efficient algorithm, because this method does not ensure about the solution in all the cases. Time
complexity of this algorithm is O(n3)

Montgomery’s block-Lanczos algorithm:
This is most reliable and efficient algorithm. Time complexity of this algorithm is O(n3). This algorithm is
for symmetric matric. If the matrix is not symmetric, we first make it symmetric but for that matrix should
be invertible. If matrix is neither symmetric nor invertible, then we can’t find solution by this method.

8 Conclusions and Future Works

This research investigated three algorithms. Firstly, it have studied standard Lanczos algorithm that doesn’t
ensures about the solution. Then, It have studied Montgomery’s block-Lanczos algorithm that finds the
solution in most of the cases but still fails in some cases. After that, it studied improved Montgomery’s
block-Lanczos algorithm that works in some more cases in comparison to Montgomery’s block-Lanczos
algorithm.
So these are the successful attempts and improved Montgomery’s block-Lanczos algorithm is the most
efficient and reliable algorithm among all the algorithms that studied in this work. Future Works can be
seen as

• Improved Montgomery’s algorithm can be analyzed in more details alongwith its implementation.

• researchers can explore and develop some new algorithm which doesn’t have the drawbacks like previous
algorithms and can work for all the cases.

• Solving linear system of equations over an arbitrary field can be challenging and have the area to
explore.

Declarations

Ethics approval and consent to participate

Not applicable.

Conflict of interest

The author claims that there are no conflicts of interest.

Data availability statement

No datasets have been generated or analyzed during the current investigation.

References

[1] D. Coppersmith, A.M. Odlyzko, and Schroeppel : “Discrete logarithms in GF(p)” Algorithmica 1: 1-
1.5(1986).

2026 @ Transitus Publishing 71 Mohan B.

Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 58-72 (2026)

[2] B.A. LaMacchia and A.M. Odlyzko : “Computation of discrete logarithms in prime fields”, Designs,
Codes and Cryptography, 1, 47-62 (1991).

[3] K. McCurley : “The discrete logarithm problem”, Cryptology and Computational Number Theory,
Proceedings of Symposia in Applied Mathematics, American Mathematical Society, 1990.

[4] A. M. Odlyzko : “Discrete logarithms in finite fields and their cryptographic significance” to appear,
Proceedings of Eurocrypt’ 84, Springer Lecture Notes in Computer Science.

[5] W. Diffie and M. E. Hellman, “New directions in cryptography”,IEEE Trans. Inform. Theory, IT-22,
644-654(1976).

[6] John Brillhart : “Note on representing a prime as a sum of two squares”, Mathematics of computation,
vol 26, 1972.

[7] Dean Phillip Reiff : “Discrete logarithm in finite field”,thesis, University of Colorado at Denver, 1996.

[8] LaMaecbla, B.A., and Odlyzko, A.M. (forthcoming). “Solving large sparse linear systems over finite
fields”, Advances in Cryptology: Proceedings of Crypto ’90, (A. Menezes, S. Vanstone, eds.), Lecture
Notes in Computer Science, New York: Springer-Vedag.

[9] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete logarithms”, IEEE
Trans. Info. Theory 31 (1985), 469-472.

[10] P. Van Oorschot, “A comparison of practical public key cryptosystems based on integer factorization and
discrete logarithms”, pp. 289-322 in Contemporary Cryptology: The Science of Integrity, G.J. Simmons.
ed., IEEE Press, New York, 1992.

[11] D.Coppersmith, “Fast evaluation of logarithms in fields of characteristic two”, IEEE Transactions on
Information Theory 30 (1984), 587-594.

2026 @ Transitus Publishing 72 Mohan B.

	Abstract
	Introduction
	Cryptography Applications
	Diffie and Hellman Problem
	ElGamal Digital Signature Scheme

	Index Calculus Method
	Method in Prime Field
	Example

	Gaussian Integer Method
	Basic Method

	Lanczos Algorithms
	Standard Lanczos method
	The improved Lanczos algorithm:
	Drawbacks of Lanczos algorithm

	Block Lanczos Algorithms
	Montgomery's block-Lanczos algorithm
	 Improved Montgomery's block-Lanczos algorithm
	 Drawbacks of Montgomery's block-Lanczos algorithm

	Conclusions and Future Works

