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Abstract

In this work, we focus on blinear equation, a crucial tool in study of nonlinear partial differential equa-
tions(NLPDEs).Using this technique, we also compare our results with already known methods like Hirota’s
technique.To convert a nonlinear partial differential equation (PDE) into bilinear form, the Hirota method
is used.Numerous disciplines, including nonlinear dynamics, visual science, mathematical physics such as
plasma physics, thermo-mechanics, optical science, and engineering sciences, employ the Hirota technique, a
strong and precise mathematical tool, to find soliton solutions of nonlinear PDEs.These solitons can change
depending on different values, which helps us to understand them better. We use a method called the Cole-
Hopf transformation to make the equation easier to solve. In order to write a class of nonlinear PDEs in
bilinear form, we offer a novel organized mathematical method. This approach is easy to utilize in programs
like Mathematica and Maple because to its simplicity. The solutions are derived in simpler forms by per-
forming transformations based on dependent variables and using tried-and-true mathematical techniques.
These results show that the effectiveness of the computational algorithm.
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1 Introduction

Physics and applied mathematics have a major area that deals with non linear partial differential equations.
These equations include unknown functions and their partial changes(called derivatives). These equations
are used to describe many physical systems, such as fluid flow, plasma physics, and ocean waves. They
have also been used to solve difficult problems like the Poincaré and Calabi conjectures. There is no general
method to solve all non-linear PDEs, so each equation is studied separately. Different techniques are used,
such as:Darboux transformation (DT) [1,2], Backlund transformation [3l4], Hirota bilinear technique [5H7,9],
Simplified Hirota method [10-13],Lie symmetry analysis [14,/15], Inverse scattering method [16,17], Pfaffian
technique [18|19]. These and other methods help us study non-linear PDEs. Among these, the Hirota
method (especially the direct method) [5] is considered the best for finding multi-soliton solutions of inte-
grable non-linear PDEs.

Changing a nonlinear partial differential equation (PDE) into a bilinear form is often a difficult and time-
consuming task, even if we already know how to change the variables. That’s why it is helpful to create
an algorithm (a step-by-step method) that can do this work automatically. With the use of computers,
programs like Mathematica and Maple can be quite helpful in performing these computations. Many re-
searchers have studied nonlinear PDEs because they are important in describing real-world problems.

The Hirota method gives exact solutions like solitons, breathers, rogue waves, lump solutions, and others.
Studying solitons is non-linear systems is an interesting and important research area. It helps us how a
single wave behave in different physical systems. Solitons are employed in non-linear research to investigate
localized and steady waves. For various significant nonlinear equations, such as KdV, modified KdV, and
nonlinear Schrédinger equations, Hirota and Hietarinta established a straightforward and easy way to de-
termine the accurate N-soliton solutions (a type of wave solution) [20,21]. They used a special rule called
Hirota’s 3-soliton condition, which helps in working with nonlinear equations. Using this rule, they searched
for easier forms (called bilinear forms) of these complex equations, which makes solving them much easier.
In Section 2, an effective step-by-step algorithm is introduced to find the bilinear equation for nonlinear
partial differential equations (PDEs).

In Section 3, several examples of well-known nonlinear PDEs are shown, such as the KdV equation [5],
Boussinesq equation [22], SK equation [23|, Caundrey-Dodd-Gibbon(CDG) equation [24], KP equation [25],
generalized BKP equation [26] and more. These examples come from areas such as nonlinear dynamics,
mathematical physic, plasma physics, and other scientific fields. All the work is done using the computer
software Mathematica. Understanding how solitons are formed, how they move and interact in non linear
systems gives deep knowledge about non-linearity wave spreading, and other important factors. Studying
solitons also improves or basic and non linear events. This have real world importance, helps with tech-
nological progress and useful in fields like ocean engineering, plasma physics, telecommunication and many
nonlinear sciences.

2 General Description For Bilinear Equation

In this section we discusses about the procedure for getting bilinear equation.
Step 1: Firstly we consider a non-linear PDE as
Q(u,uzxl,ux2,...) =0
that contains v = u(z1,x2,...,Tn,t) and its partial derivatives with respect to the independent variables
x1,x2,...,xn and t.

Step 2: Considering the phase variable 7; depending on the given nonlinear PDE as

N = a1,71 + a2 + azixs + ... + d;t,
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where apn;; 1 < N < n are the constants, and that d; is the dispersion.To show how the algorithm can be
applied to various cases, which are covered in the sections that follow, we now employed the conventional
relation for the phase variable. Nevertheless, the particular form of the nonlinear PDE may influence this
decision.

Step 3: Finding dispersion relation, a relation between frequencies and wave numbers.

Step 4: Finding Cole-Hopf transformation u(z,t) = R(Inf),, ; n=1,2,3... , for the given nonlinear PDE, n
can be found by balancing the nonlinear terms with the highest-order derivative.

Step 5: Considering the function f(z,t) =1+ €™ and substituting in given non linear PDE.
Step 6: Calculate the value of constant R.
Step 7: Finding a bilinear equation in f for non linear PDEs as
F(f, fxl, fx2,...) =0,
which includes f and its partial derivatives taken with respect to the independent variables x1, x2,...,xn and
t.
3 Application of Bilinear equation from Non linear

3.1 (141)-Dimensional Equations
3.1.1 Korteweg-de varies(KdV) equation

The non-linear KdV equation [5] is given
up + 6uty + Ugper = 0. (1)

Here, u is the dependent variable that shows the wave’s height (amplitude), x stands for the position
(space), and t stands for time. Equation (1) mainly focuses on soliton solutions, which are special single-
wave solutions that keep their shape and speed as they move. Let us consider a phase variable 1 in the KdV
equation (1) as

ni = pix — qit, (2)
where p;, i = 1,2, ... as constant parameters and ¢; as dispersion coefficient
Putting
u=-¢em
then ‘
up = —qie™",

Ugrar = P?éﬂ,
putting in linear term of eq. (1) u; + uzzr = 0, we get
—gie" + ple” =0,
em(p? - Qi) =0,

we get dispersion relation
_ 3
i = P;-
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Considering the transformation
u(z,t) = R(Inf)zz,

and putting it with
Flet)=1+4em
in Eq. (1) On solving,
2
p2€_p3t+px P> <e—p3t+p:p)

1 4+ e Pit+pr (1+ e—p3t+px)2

t

2 2
2 (,—p3t 2 (,—p3t
pRePtter P (e P +pm) pRePtter P (e p ﬂm)

+6R - R -

L e PHpe (1 4 empPtipr)? Lbe?iime (1 4 empitipr)?

2
p2€7p3t+pm p? (€—p3t+px>
+ | R 3 — 5 =0
1+ e P’t+pe (1 + 6*p3t+pw)

T,x,T

6RpSe—2p(P*t—x) (e—p(pgt—m) — 1) (R—2)

= O,
(1 + efp(thfx))‘r’

= R=2
So, the logarithmic transformation becomes
u(z,t) =2(Inf)ra, -
We can write it in another form
U= Wyy where w=2(Inf)yq.

Now from (5),we have
Ut = Wegt, Uz = Wrzzr aNd  Uxxx = Wixxxx,

putting the above expression into eq.(1),we get
Wyat + OWraWrzr + Wrzare = 0.
On integrating w.r.t
Wyt + 6 / W g Wiz 0T + Wezzr = 0,
1 1,
substituting the value of I in eq.(6), we get

2
Wyt + 3wxa: + Wegzzr = 0,

T

3)
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then we calculate,

w. — 2z
T — f y
v, 2] = Fof2)
xt — f2 )
2 fmxf - fm2
Wyy = ( f2 )7
TXTxT — f3 3
2(fmm;rzf3 - 8f$$$f$f2 + 12 :?:cf2 + 24fa:$f3f - 12f§)
Wrrre = f4 >

putting the all above values in equation(7),we get a billinear equation in f as

ffxt_fmft+3f2mm_4fxf+ffw:v:va:- (8)

3.1.2 Boussinesq equation

We have the Boussinesq equation [27] as
Ugp — Uy — 6ui — 6uugy — Usgy = 0. 9)

We suppose the phase variable 1; = p;x — ¢;t. On putting u = €”¢ in eq.(9), then we get dispersion relation

2 i
u2t:q1'ena
4 _ni
u4x:piena
2 i
u2x:piena

putting in linear term of eq.(9)ug; — vz, — ug, = 0, we get

2 mi _ 2 mi A mi _
gie” —pie” —p;e” =0,

e (pi +p}) = gle™.

So, we get dispersion relation as

di = \/p} +p}.

u(x,t) = R(Inf)zs, (10)

Considering the Cole-Hopf transformation

for the given nonlinear PDE.

2
plepr—V/pi4p?t p? (epx—\/p4+p2t) plepr—V/piHp?t
- —|R
1 + epr—VpiHp?t <1 + epr—/ P +p? t>2 1 + epr—Vpi4p?t

t,t
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(1+ epw—\/p“ﬂ)“)z

2
—6 _
1 —+ ePT—v pt+p2t (1 4 epq:—\/p4+p2 t)2

T,T

2
2 —/prp2t
pRepr—/pHpRt D (ep‘” pitp )

2

T

2
2 /P2t
pRepr—/rHt D (e”’” potp )

—6R( R

2

R p2€pz_ /p4+p2 t p2 (epx_ V p4+P2 t)
_ _ -0
1 4+ epr—Vp'+p*t (1 1 epr—/php? t>2

T,2,2,T

“12(R — 2)Re2- 2P <_3ep:n—\/p2(p2+1)t 1 e2pa=2y/PP (PP 1)t | 1) o

=

(14 Ve

= R=2
So, the logarithmic transformation becomes
u(z,t) =2(Inf)gq.

We can write it in another form

1+ epr—Vpitpt (1 + epw—\/p4+p2t>2 1+ epr—Vpidpt (1 + epf—\/p4+p2t>2

=0

T,x

(11)

U= Wy where w=2(Inf)ys, (12)

now from (12),we have
Utt = Wrzzt, Uzz = Wrzzr and  Ugpr = Wezrrr,
putting the above expression into eq.(9),we get
Wyttt + Wrrxr — 3(wazx)ix O O
on integrating w.r.t x
Wyt + Wrapr — 3('wzz)g2g — Wezzer = 0, (13)

on again integrating w.r.t x

Wit + Wy — 3(wmx)2 — Wygax = 07 (14)
then we calculate

w2

x f Y
_ Q(fa:xf _ f:g)
Wyx = ﬁv
_ Q(fxa:fo B 3fx:pfxf + in)’)
Wrrr = )
£3
2 _£2
Wi = (fttf2 fi )7
f

putting the all above values in equation(9),we get a billinear equation in f as
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3.1.3 Caundrey-Dodd-Gibbon (CDG) equation
Taking CDG equation [28] as

up + usz + 30uuz, + 30uzug, + 180uu, = 0. (16)
We suppose the phase variable 1; = p;x — ¢;t. On putting u = € in eq.(16), then
Ut = *Qieniv
Uy = p?ema
putting in linear term of eq.(16)u; + us, = 0,
—gie" + ple” =0,
Nt (DY — . 1M
€ (p’L) = (g€’ .
Then we get dispersion relation as
_ 5
qi = P;
Considering the Cole-Hopf transformation
u(:c, t) = R(lnf)x:m (17)
for the given nonlinear PDE.
5 2 5 2
pReP e P> (e*p t+ p’f) pReP e p? (e*p ar px)
1 4+ e—P°t+pz h (1 + efp5t+p:r)2 | B 1 4+ e—Pt+pz o (1 + efp5t+p:r)2
t T,T,X,T,T
2 —pSttpx 2 5 2 —pSttpz 2
p26—p5t+px D (6 PP > pReP e P <e pii+p )
+30R 1+ e—Pot+px o (1 + e—p5t+p:c)2 R 1+ e—PPttpx o (1 + e—p5t+pm)2
T,x,T
2 —pPt+px 2 5 2 —pPtipx 2
p2e—p5t+p1‘ P (e PP ) ple P tHpr D (e prtTp )
OB e (1 + e—Pottpe)2 ol Eper (1 + e—P°ttpr)2
T T,r
5 2 —5t+:v2 2 5 2 —5t+z2
) pZefp"tera: P (6 potTp ) p2€fp“‘t+px P (6 prtTp )
180K 1+ e Pttpr (14 e P ttpr)2 R 1+ e Pttpr (14 e P ttpe)2 =0
T
— 2 4 —x
180 =2 t=2) p7 R(R — 1) ((R —3) e 20 ia) 4 (LR 4 3) eptie) g LD %)
= 7
(1 + 6fp(p4t*x)) =0
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=R=1

We get the value of R is 1, by putting the function f(z,t) =14 €™ in equation(16) .
So, the logarithmic transformation becomes

u(z,t) = (Inf)gy. (18)

We can write it in another form
U= Wy where w = (Inf)zsz, (19)

now from (19),we have
2 2
Ut = Wzgt, Usy = W7z, UUZp = W2z W5z, Uglzp = W3gWiz aNd U Uz = WyapW3g,
putting the above expression into eq.(16),we get

Wyt + Wiy + 30w2xw5a} + 30w3xw4x + 180w§xw3x7

on integrating w.r.t x

Wat + Wee + 30(Wazwaz) + 60(Wee)® (20)
then we calculate
Wy = & Wt = ﬁ
X f b f )
 faaf — 2
wII — T 0
2
_ fx:m:mfs — 4fxacacf:vf2 +6 g?fo + 12fzxf;§f - 6fx4
Werre = f4 y

1
Waeszar = 55 | fosaaf® = Ofsazve fof* +15 funsa farf " = 20 faran f2F° 41520 f* + 90 fuza fao fof?

—120faaa £ f* + 155,87 + 1805, 3% = 270 fow fo f + 12017
Putting the all above values in equation (16),we get a billinear equation in f as
_ftfz + ffzt - 10f23m + 15f2mf4r - 6fa:f5x + ffﬁz =0. (21)

3.1.4 Sawada-Kotera(SK) equation

Taking SK equation [29] as
up + 5(uugg) s + 5uuy + us, = 0. (22)

We suppose the phase variable n; = p;x — ¢;t. On putting u = € in eq.(22)
up = —gie™,

5 M
Uy = Py e 3

putting in linear term of eq.(22)u; + us, = 0, we get

—gie™ + pje™ =0,
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7 (p?) = gie”,
Then we get dispersion relation as
5
qi = Pp;-
Taking the Cole-Hopf transformation as

u(z,t) = R(Inf)zz, (23)

for the given nonlinear PDE.

2
5
2 ,—pSt+pz p2 (e‘p t+ px) 2 —pPt+px
e e
P - I Y Y i

1+ e Pttpe (14 epttpr) 1 + e Pttpz

t

»? (6—p5t+px>2 p2€7p5t+pm p? (6—p5t+pm>2
B (14 e-p°t+pr)? 1+ e Pttpr (1+ epotpe)?
z,r
2 —pSt+pe 2 (ez‘pst“””>2 2 —pt+pe
L5R ple PP _p B ple PP
1 + e—P°t+pz o (1 + e—p5t+px)2 1+ e—Pttpe o
5 2 . 2\ 2
) p2€—p5t+px p? (efp pr) p26—p5t+pm p? (efp pr)
+5R 11 e—pottpe - (1+e‘p5t+p$)2 1+ e pottpe - (1 —i—e‘pst‘*‘m)z

T
2, —p°t+px
pe _
T,T,2,T,T

-5 ((R —10) e~ 20@"t=2) 4 (_R 4 10)e PP't=2) 4 2= 3p(p't—x) _ 2) RpTe~2@'t-2)(R _ 6)
=

(1+er't==)T =0

= R =06.

We get the value of R is 6 by putting the function f is f(x,t) = 1+ e™ in equation(22).
So, the logarithmic transformation becomes

u(:c, t) = 6(lnf):v:v7 (24)

we can write it in another form
U= Wy, where w=06(nf)ys, (25)

now from (25),we have

Ut = Wygt, UgUgy = WrpaWrrrr, UlUzzr = WrzWrrzax and U5y = W7,
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putting the above expression into eq.(22),we get
Wext + 5w3xw4a: + 5w2xw5x + 5(wxm)2w3x + wry = 0

on integrating w.r.t x

Wyt + (5wa:acw4:v) + g(wa::v)g + Wey = 07 (26)
then we calculate
O, O
x f ) t f )
Wy = Q % -6 fmtf_fccft o 6(fztf_fg:ft)
xt — ot f - f2 - f2 5
W, — ﬁ <6fx> —6 (foc:cf_fm2> _ G(fxxf_me)
_ 6(fuwaS® = 6 fraafof® + 6f2uf> + 18fuufaf — 241;)
Wrrrr = f4 ,
6

Wrassar = 5 faaaad® =15 fazae fof* + 30 funza o f* = 60 fraa f210 4 60 20 f* + 180 fras fro fo f?
— 360 fuza fo [+ 90f3, % 4+ 540f2, f2 f* = 1080 fuu f1 f + T20f7 .
Putting the all above values in equation(22),we get a billinear equation in f as

—fefo + ffot — 10f%50 + 15fou f1o — 6 fof50 + ffoz = 0. (27)

3.2 (2+1)-dimensional Equation
3.2.1 Kadomstsev Petviashvili (KP) Equation

We have the integrable KP equation [25] as
(ut + 6uty + Upgg), + Uyy = 0. (28)
We suppose the phase variable n; = p;x 4+ ¢;y — d;t. With
u=em,

we have
= —d. i
Uty = iPe",
4 ni
Upzaxr = Py e’ )
_ 2.
Uyy = G e,
putting in linear term of eq.(28)uiy + Upzzz + Uyy = 0,

—dipe™ + pie + gie™ =0,

e (p} + q7) = dipie™,

we get dispersion relation

p} — d?

Dbi

d; =
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Finding the Cole-Hopf transformation

u(ﬂ:, Y, t) = R(lnf)a:xy (29)
for the given nonlinear PDE.
(*—d)t 2
_ 2 prtqy—-—1=

" p2€px+qy—7@4 qu)t (e P )
wopqy— 2=t - (ph—q2)t\ 2

14 P » 14 eprtay—"— )

t,x

+6R —
(pt—q2)t 4_,2 2
PT+qYy— _(2—g%)t
1+e 2 <1 + epac—f—qy » >

_ e 4 g2y \ 2
1+ ePrtay » <1 i Py @ pq )t)

p
(0t —q®t 2 (p*—a?)t 2
4_ 2 2 PTAqY— 4_ 2 2 prT+qy—
p26p$+qy—(p pq )t ( p (6 P > - pzepm+qy_ (® pq )t p-le D

2
_ =
2 pm+qy—7(p4_q2)t p? P P
p’e v
+6 | R —
wtqy— PE=a?)t (pt—q2)t
14T <1 L prtay—

2
1—g?)t
4_,2 2 [ prtay—-t—
erpx+qy—7(p L) (6 P >
+R - ;
_|_

p
(-t
1+ eprrqy*% (1

xT

_(*=q?t
ePrray > )
Z,T,T,T
2
=gt
4_ 2 2 PL+HqY—
p2€px+qy77(p e P <€ P >
~|R - =0
pr-+qy— Tt Ly @i 2
1 _|_ e P 1 + epCE qy D
vy
6 —2p4t+2p2:c+2qyp+2q2t —2p4t+2p2x+2qyp+2q2t —p4t+p2w+qyp+q2t
12Rp°e P e P —3e z +1)(R-2)
=0

—phtrp2atquptat \ O
1+e P

= R=2
We get the value of R is 2 by putting the function f is f(x,y,t) = 1 4+ €™ in equation(28). So,

u(z,t) =2(Inf)ge. (30)

We can write it in another form

U= wg, where w=2(Inf)yy, (31)
now from (31),we have

Ut = Wggt, Uy = Wygx and  Ugge = Wegrae-
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Putting the above expression into eq.(28),we get

(wzxt + bWy Wape + wmmxmx)ac — Wrxyy = 0

on integrating w.r.t x
Wezt + OWroWaae + Wegaor — Wyyy = Oa (32)

on again integrating w.r.t «
Wet + 6/wmmwxa:x8x + Wogpr — Wyy = 0, (33)

here taking

1 1
I= 6/wmwxm8x = — /mewmxax = fwix,
2 2
substituting the value of I in eq.(33), we get
Wyt + 3wga: + Wrgre — Wyy = 0, (34)
then we calculate
2fy
Wy = —(,
f
Wyt = 2(fxtf - fa:ft)
xT f2 M
w _ 2(fmzf _ fo)
Txr — f2 )
_ 2(fm:mf2 — 6 feafuf + 4f:§)
Werax = f3 s
2(faca:a:a:f3 - Sfa:a:a:fazf2 + 12 zzxf2 + 24f$$f3;f - 12f§)
Wrrex = f4 5
20t = 1))
Wyy = 7}02 .

Putting the all above values in equation(28),we get a billinear equation in f as
ffxt - fzft + 3f2xm - 4fxf:1::rxx + ffxmmz - ffyy + fy2 =0. (35)

3.3 (341)-dimensional Equation
3.3.1 Generalised BKP Equation
We consider BKP equation [26] as

Uyt + Uz — BUplgy — SuzzUy — U(32)y = 0. (36)
We suppose the phase variable n; = p;xz + q;y + r;z — d;t. With
u=-¢el

, we have
_ i
Uy = —d;qie”,
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%

Ugy = pﬂ”ien )
3 1
U(Sx)y =D; Qien )

putting in linear term of eq.(36) wy¢ + ugz + u(34)y = 0, then

—d;qie™ + 3pirie™ — pgie™ =0,

e (=3piri + piqp)

we get dispersion relation as
_ =3piri + P

%
quZ e )

d; =
qi
Taking the Cole-Hopf transformation
u(z,y,t) = R(Inf)ps, (37)
for the given nonlinear PDE.
Rpepx—&-qy—i-rz—i(p?)q';smﬂ Rpepac—l-qy—i-rz—i(paq*'?’pr)t
+3
1+ epx-l-qy-i-rz—i(pgqf’p o 14 epx+qy+rz—7<p3q+qg”)t
t,y T,2
Rp epx+qy+rzf7(p ’ et Rp epw+qy+rz77@ qugp T
-3
I T e
x?y
Rpepa:—i-qy—i-v"z—w Rpepz—&—qy—&—rz—(pgq';&
-3
(p3q+3pr)t (p3q+3pr)t
pa-tqy+rz— P2 pa-tqy+rz— PSR
1+e q v 1+e v
Rpepa:Jrqerrzfi(”Sq?’”” .
o (p3q+3pr)t -9
PTHqy+rz—-"—"———
1 + e q m7x7x7y
4 2q2y+(2p3t+2pz+2'rz)q76prt
6Rp-e q
= R—-2)=0
< q?y+(p3t+prtrz)q—3prt ) ( a2 y+(p3t+pa+rz)g—3prt 5( )
qle a -1 1+e q
R=2
We get the value of R is 2 by putting the function f(z,y,t) =1+ €™ in equation(36) .
So, the logarithmic transformation becomes
we can write it in another form
U= Wy, where w=2(Inf)ys, (39)
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So,
o 20uf 2
x f f 9
L2002
z f f Y
wy = 200 _ 26
f [
oy = 2l uf)
W = 2(faczf B facfz)
Tz — f2 Y
2 f:ca:f B f:g
Wrr = (fQ)’
Wyy = 2(fxyff; f:chy)’

9 fa:xmyfg - 3fmzxfyf2
Wrxry = F - Sfxxyfxf2 + 6fa:xfxfyf

~ 213y
Putting the all above values in equation(36),we get a billinear equation in f as
_ftfy + ffyt - 3f:pfz + 3ffxz - 3f:pyf21 + fxf(Zx)y - fnyI - ff(Bx)y =0. (40)

4 Application of bilinear equations

Nonlinear partial differential equations (PDEs) play a crucial role in describing various physical phenomena
in fluid dynamics, plasma physics, nonlinear optics, and soliton theory. One powerful method for solving
and analyzing nonlinear PDEs is the bilinear method, especially in the form introduced by Hirota. Bilinear
equations play an significant role in different thechniques such as Hirota method, simplified Hirota technique,
Béacklund transformation, direct symbolic approach, bilinear neural network method, and symbolic bilinear
technique in solving nonlinear PDEs. The original nonlinear PDE is converted into a bilinear equation,
which acts as a framework to search for solutions such as breathers, umps, kinks and rogue waves.

The Hirota approach, which includes the development of multi-soliton solutions, is a straightforward tech-
nique for determining the precise solutions of nonlinear PDEs. The dependent variable transformation is
used to translate the provided PDE into bilinear equation. Bilinearization plays an essential role in many
direct solution methods because it makes it possible to apply strong mathematical techniques to obtain
exact solutions.

Tools for symbolic computation are frequently employed to carry out the bilinearization procedure and to
handle the resulting analysis. Recent research focuses on algorithmic and symbolic computation approaches
to automatically derive bilinear forms. These methods use computer algebra systems such as Mathematica,
Maple, or Matlab to assist in the bilinearization of complex nonlinear systems.

In order to make the bilinear technique for (n+1)-dimensional PDEs more accessible and systematic, symbolic
methods have been suggested to generalize it. In simple terms, bilinear equations serve as an intermediate
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step between the original, usually complicated nonlinear equations, and more manageable forms that permit
the determination of exact solutions. They are a key element in the study of integrable systems and soliton
theory, as they allow researchers to employ advanced techniques for analyzing and solving these equations.

5 Conclusion

In this work, we constructed the bilinear equation for a class of (n + 1)-dimensional nonlinear partial differen-
tial equations (PDEs). We studied several well-known equations such as KdV, KP, CDG, SK, gKP equations
and others, and formulated their bilinear equations. An important and developing field in the study of non-
linear PDEs is the bilinear approach. Its scope is expanding quickly into increasingly complicated systems
with the integration of algorithmic tools and symbolic computation. Bilinearization is therefore essential
to nonlinear science research, both theoretically and practically. The KdV equation, Boussinesq equaton,
KP equation, SK equation, shallow water wave, modified BKP equation, and other well-known nonlinear
equations were used to test this approach. The program Mathematica was used to solve these using our
novel approach.

Our findings demonstrate the method’s effectiveness and dependability in locating bilinear versions of non-
linear PDEs. Numerous disciplines, including nonlinear dynamics, oceanography, mathematical physics,
fluid dynamics, and soliton theory, use these kinds of equations. As a result, our simplification is highly
beneficial and highly suggested for further cutting-edge study and development.
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