
Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 107-119 (2026)

Received
January 06, 2026

Revised
January 27, 2026

Accepted
February 01,
2026

Published
February 04,
2026

Keywords
Partial Differ-
ential Equation,
Rational So-
lutions,KdV
equation, mKdV
equation, KMN
equation, KP
equation.

Analysis of Wave Transforma-
tional Method to Nonlinear
PDEs: Exponential Rational
Function Method

Kirti†

†Department of Mathematics, Central University of Haryana,

Jant-Pali, Mahendergarh-123029, Haryana, India.

Corresponding Author: bhardwajkirti718@gmail.com

DOI/url: https://journalmanager.transitus.in/index.php/jamss

Abstract

This work explores the well-known wave transformational approach as exponential rational function method
(ERFM) to the nonlinear partial differential equations (PDEs). The method utilizes a rational function in
term of the exponential functions, which is suitable for the study of nonlinear equation. Due to the rational
function solutions, the technique can give different type of solutions such as solitons, lumps, kinks, and
breathers. As it considers the exponential rational forms, it provides the exact solution of the nonlinear
PDEs. This study investigates the ERFM to the well-known equations such as KdV equation, KP equation,
mKdV equation, and KMN equation. It also analyses the dynamical behavior for the obtained solutions in
three dimensional graphics for appropriate values of the arbitrary parameters. The models studied in this
work explains the nonlinear wave phenomena from different fields such as fluid dynamics, oceanography,
plasma physics, opitic fibers, and other sciences.
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1 Introduction

In mathematics and physics, a nonlinear equation [1–7] play major role to solve complex wave phenomena
in nonlinear sciences such as plasma physics, optical fibers, solid state physics chemical physics. Its help
to understand stability and wave interactions. The exponential function used to find the exact solution of
nonlinear evolution equations. The method reduces the partial differential equations (PDEs) to an ordinary
differential equations (ODEs) by using a traveling wave transformation. Nonlinear evaluation equations are
important in theoretical and practical applications. This method is very useful in mathematical physics and
applied mathematics [1], and was developed for solving PDEs utilizing wave transform.ation. It assumes
the solution of the exponential rational function which enable to drive soliton, periodic and singular wave
solutions.

Uses:

1. It finds exact solutions of nonlinear evolution equations such as korteweg-de vries(KdV) [8,10], Modified
korteweg-de vrie (mkdv) equation [18], Kundu-Mukerjee Naskar (KMN) equation [9], Kadomtsev-
Petviashvili (KP) equation [15,21], and others.

2. These solution play important role of physical phenomena like as solitary wave, plasma wave, optical
pulse propagation.

3. It is more systematic and unified as compare to other methods. It can generate various type of wave
solutions such as solitons, lumps, kinks, and breathers.

Several researchers have developed various method to obtains exact solution of nonlinear evolutions
equations such as ,Hirota bilinear method [4], The tanh-sech method [5, 6], homogeneous balance method
[7, 8], the (G/G)-expansion method, inverse scattering method [2], extended tanh method [6], sine–cosine
method [20,21], pseudo-spectral method [12], Lie group analysis [13], and others techniques.

2 General description of ERFM

We consider the wave transformation

v(x1, x2, x3, · · · , t) = V (φ); φ = a1x1 + a2x2 + · · ·+ anxn + bt, (1)

to the (n+ 1)-dimensional nonlinear partial differential equation

D(v, vt, vx1 , vtt, vx1x2 , vx2x2 , . . .) = 0, (2)

where D is a polynomial function of dependent and independent variables and their partial derivatives, to
covert PDE to an ODE as

H(V, V ′, V ′′, V ′′′, . . .) = 0. (3)

We consider the general solution of equation (3) as

π(φ) =
c0 + c1π(φ) + c2π

′(φ) + . . .+ cnπ
n(φ)

d0 + d1π(φ) + d2π′(φ) + . . .+ dnπn(φ)
, (4)

where

π(φ) =
x1e

b1(φ) + x2e
b2(φ)

x3eb3(φ) + x4eb4(φ)
.

having ci ,di as the unknown coefficients for i = 0, 1, . . . , N and xi, bi are arbitrary constants(i=1,2,3,4). N
is a positive integer computed using homogeneous balancing principle in the equation (1).
We put the equation (4) into equation (3), and collect the cofficients to exponential term to get the values
of parameters by solving the obtained algebraic system.
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3 Application of ERFM to nonlinear PDEs

3.1 Korteweg-de Vries (KdV) equation

Let us consider the KdV equation [14]

vt + 6vvx + vxxx = 0. (5)

We consider the wave transformation

v(x, t) = V (φ), φ = x− ct, (6)

where φ is a traveling wave variable, c is wave speed, and V (φ) is unknown function.
Now, we get

vt(x, t) = −cV ′(φ),

vx(x, t) = V ′(φ),

vxx(x, t) = V ′′(φ),

vxxx(x, t) = V ′′′(φ).

On putting these values in equation (5), we get

−cV ′(φ) + 6V (φ)V ′(φ) + V ′′′(φ) = 0. (7)

Applying ERFM and consider

V (φ) = A+
Beξ

(1 + eξ)2
, ξ = λφ. (8)

and get

V ′(φ) =
Bλeξ(1− eξ)

(1 + eξ)3
,

V ′′(φ) =
Bλ2eξ

(
(eξ)2 − 4eξ + 1

)
(1 + eξ)4

,

V ′′′(φ) =
Bλ3eξ

(
−(eξ)3 + 11(eξ)2 − 11eξ + 1

)
(1 + eξ)5

.

On substituting the value of V ′, V ′′, V ′′′ in equation (7), and compute the value of A,B, c and λ,we get

−c
(
Bλeξ(1− eξ)

(1 + eξ)3

)
+6

(
Bλeξ(1− eξ)

(1 + eξ)3

)(
A+

Beξ

(1 + eξ)2

)
+
Bλ3eξ

(
−(eξ)3 + 11(eξ)2 − 11eξ + 1

)
(1 + eξ)5

= 0, (9)

(eλφ − 1)[(6A− c+ λ2)((eξ)2 + 1) + (12A+ 6B − 2c+ 10λ2)eξ] = 0. (10)

Comparing the coefficient of (eξ)2 and eξ to zero, for computing the value of A,B,c and λ as

6A− c+ λ2 = 0, 12A+ 6B − 2c− 10λ2 = 0. (11)

For A = 0,, we obtain B = 2c, c = λ2.
Putting the values of A, B, c, and λ in equation (8), we get

V (φ) =
2ceλφ

(1 + eλφ)2
(12)
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V (φ) =
c

2
sech2

(√
cφ

2

)
. (13)

Put the value φ in the above equation,we get

v(x, t) =
c

2
sech2

(√
c

2
(x− ct)

)
, (14)

which gives the required solution of the equation (5), and having dynamics in Figure 1.

3.2 Modified Korteweg-de Vries (mKdV) equation

Let us consider the mKdV equation [18]

ut + 6u2ux + uxxx = 0. (15)

Using wave transformation
u(x, t) = U(φ), φ = x− ct, (16)

where φ is traveling wave variable, c is wave speed, and U(φ) is an unknown function.
We have

ut(x, t) = −cU ′(φ),

ux(x, t) = U ′(φ),

uxxx(x, t) = U ′′′.

Putting all these values in the equation (15),we get

−cU ′ + 6U2U ′ + U ′′′ = 0. (17)

Applying ERFM and consider

U(φ) = A+
B
√
eξ

1 + eξ
, ξ = λφ. (18)

or

U(φ) = A+
BS

1 + S2
, S = e

λφ
2 . (19)

Now, we have

U ′(φ) =
Bλ

2

S(1− S2)

(1 + S2)2
,

U ′′(φ) =
Bλ2

4

S(S4 − 6S2 + 1)

(1 + S2)3
.

U ′′′(φ) =
Bλ3

8

S(1− 23S2 + 23S4 − S6)

(1 + S2)4

Substituting the value of U ′, U ′′, U ′′′ in equation (17) and compute the value of A,B,c and λ, we get

−c
(
Bλ

2

S(1− S2)

(1 + S2)2

)
+ 6

(
A+

BS

1 + S2

)2(Bλ
2

S(1− S2)

(1 + S2)2

)
+
Bλ3

8

S(1− 23S2 + 23S4 − S6)

(1 + S2)4
= 0. (20)

4A(2A2 − c) +B(24A2 − 4c+ λ2)S + 12A(2A2 + 2B2 − c)S2 + 2B(24A2 + 4B2 − 4c− 3λ2)S3
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(a) c = 2 (b) c = 4

(c) c = 6 (d) c = 8

Figure 1: Nonlinear wave profiles of solution (14) for different values of c.
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+12A(2A2 + 2B2 − c)S4 +B(24A2 − 4c+ λ2)S5 + 4A(2A2 − c)S6 = 0. (21)

Comparing the coefficients of exponential functions to zero,we get

4A(2A2 − c) = 0,

B(24A2 − 4c+ λ2) = 0,

12A(2A2 + 2B2 − c) = 0,

2B(24A2 + 4B2 − 4c− 3λ2) = 0. (22)

For A = 0, we obtain B2 = 4c,λ2 = 4c.
On putting the values of A,B, c, and λ in equation (18), we get

U(φ) = B

(
e

λφ
2

1 + eλφ

)
= B

(
1

2
sech

λφ

2

)
=
√
c sech

(√
c(φ)

)
(23)

or
u(x, t) =

√
c sech

(√
c(x− ct)

)
, (24)

which is the desired solution of equation (15), and having dynamics in Figure 2.

3.3 Kundu-Mukerjee-Naskar (KMN) equation

The KMN [9] equation is generalized form of KdV equation

ut + uux + uxxx + uxy = 0. (25)

With wave transformation,
u(x, y, t) = U(φ), φ = x+ y − ct, (26)

we have
ux(x, y, t) = cU ′(φ),

ut(x, y, t) = U ′(φ),

uxy(x, y, t) = U ′′(φ),

uxxx(x, y, t) = U ′′′(φ).

Putting all these values in equation (25), we get

−cU ′(φ) + U(φ)U ′(φ) + U ′′′(φ) + U ′′(φ) = 0. (27)

Applying ERFM and consider

U(φ) =
a0 + a1e

ξ

1 + b1eξ
, ξ = λφ (28)

we have

U ′(φ) =
a1λe

λφ(1 + b1e
λφ)− (a0 + a1e

λφ)(b1λe
λφ)

(1 + b1eλφ)2

U ′(φ) =
λeλφ(a1 − a0b1)

(1 + b1eλφ)2
.
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(a) c = 2 (b) c = 0.5

(c) c = 6 (d) c = 3.4

Figure 2: Nonlinear wave profiles of solution (24) for different values of c
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U ′′(φ) =
λ2eλφ(a1 − a0b1)(1− b1eλφ)

(1 + b1eλφ)3
.

U ′′′(φ) =
λ3 (a1 − a0b1) eλφ

(
1− 4b1e

λφ + b21e
2λφ
)(

1 + b1eλφ
)4 .

Substituting the values U ′, U ′′, U ′′′ in equation (27) and compute the value of a0, a1, b1, we get:

−c
(
a1λe

λφ(1 + b1e
λφ)− (a0 + a1e

λφ)(b1λe
λφ)

(1 + b1eλφ)2

)
+

(
a1λe

λφ(1 + b1e
λφ)− (a0 + a1e

λφ)(b1λe
λφ)

(1 + b1eλφ)2

)
(
a0 + a1e

ξ

1 + b1eξ

)
+
λ3 (a1 − a0b1) eλφ

(
1− 4b1e

λφ + b21e
2λφ
)(

1 + b1eλφ
)4 +

λ2eλφ(a1 − a0b1)(1− b1eλφ)

(1 + b1eλφ)3
= 0. (29)

Assuming a0 = 0, a1 = c, b1 = 1., and putting these values in equation (28), we get

U(φ) =
ceξ

1 + eξ
=

c

1 + e−ξ
=
c

2
sech2

(
ξ

2

)
Let λ =

√
c, with ξ = λφ, we get

U(φ) =
c

2
sech2

(√
c

2
φ

)
or

u(x, y, t) =
c

2
sech2

(√
c

2
(x+ y − ct).

)
, (30)

which gives the solution for equation (??), and dynamics in Figure 3.

3.4 Kadomtsev-Petviashvili (KP) equation

Let us consider KP equation [15,19]

(ut + 6uux + uxxx)x + 3σ2uyy = 0, (31)

where σ = ±1. Let us considering the transformation

u(x, y, t) = U(φ), φ = x+ αy − ct. (32)

So, we have
ut(x, y, t) = −cU ′(φ),

ux(x, y, t) = U ′(φ),

uyy(x, y, t) = α2U ′′(φ),

uxxx(x, y, t) = U ′′′(φ).

On putting these values in equation (31), we get

− cU ′′(φ) + 6U ′(φ)2 + 6U(φ)U ′′(φ) + U ′′′′(φ) + 3σ2α2U ′′(φ) = 0. (33)

⇒ U ′′′′ + 6UU ′′ + 6(U ′)2 +
(
3σ2α2 − c

)
U ′′ = 0. (34)

⇒ U ′′′′ + 6UU ′′ + 6(U ′)2 +AU ′′ = 0, A = 3σ2α2 − c. (35)
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(a) c = 1.5 (b) c = 0.8

(c) c = 0.5 (d) c = 2.5

Figure 3: Nonlinear wave profiles of solution (30) for different values of c.
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For σ = α = 1;A = 3− c. Applying ERFM, and consider

U(φ) =
a0 + a1e

ξ

1 + b1eξ
, ξ = λφ, (36)

we have

U ′(φ) =
a1λe

λφ
(
1 + b1e

λφ
)
−
(
a0 + a1e

λφ
) (
b1e

λφ
)

(1 + b1eλφ)
2 ,

U ′′(φ) =
λ2eλφ(a1 − a0b1)(1− b1eλφ)

(1 + b1eλφ)3
,

U ′′′(φ) =
λ3 (a1 − a0b1) eλφ

(
1− 4b1e

λφ + b21e
2λφ
)(

1 + b1eλφ
)4 ,

U (4)(φ) =
λ4 (a1 − a0b1) eλφ

(
1− 11b1e

λφ + 11b21e
2λφ − b31e3λφ

)(
1 + b1eλφ

)5 .

Putting all these values in equation (35) and compute the value of a0, a1, and b1, we get

λ4 (a1 − a0b1) eλφ
(
1− 11b1e

λφ + 11b21e
2λφ − b31e3λφ

)(
1 + b1eλφ

)5 + 6

(
a0 + a1e

ξ

1 + b1eξ

)
(
λ2eλφ(a1 − a0b1)(1− b1eλφ)

(1 + b1eλφ)3

)
+ 6

(
a1λe

λφ
(
1 + b1e

λφ
)
−
(
a0 + a1e

λφ
) (
b1e

λφ
)

(1 + b1eλφ)
2

)2

+A

(
λ2eλφ(a1 − a0b1)(1− b1eλφ)

(1 + b1eλφ)3

)
= 0. (37)

Assuming a0 = 0, a1 = c, b1 = 1.
From equation (36), we get

U(φ) =
ceξ

1 + eξ
=

c

1 + e−ξ
=
c

2
sech2 λφ. (38)

Let λ =
√
c
2 , with ξ = λφ, we have

u(x, y, t) =
c

2
sech2

(√
c

2
(x+ y − ct)

)
, (39)

that gives the solution for equation (31), and dynamics are shown in Figure 4.

4 Advantages and limitation of ERFM

4.1 Advantages

• The method helps to get clear, step-by-step answer for exact solutions that are useful to understand
the system behavior.

• It can work for several kinds of nonlinear partial differential equations.

• This approach can investigate the solutions more quickly compared to other methods.
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(a) c = 0.5

11.pdf

(b) c = 0.8

(c) c = 1.5 (d) c = 2.5

Figure 4: Nonlinear wave profiles of solution (39) for different values of c.
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4.2 Limitation

• This method can have restrictions for nonlinear partial differential equation in the fields such as
complex fluid dynamics, turbulence, and strongly nonlinear PDEs.

• Sometime the results of algebraic equation are long and complicated,which can long time to evaluate
the solutions.

5 Conclusion

In this work, we investigated several well-known nonlinear PDEs through exponential rational function
method. We obtained the exact solutions for the all investigated equations. We utilized a rational function
in term of the exponential functions, which is suitable for the study of soliton solutions, that gave different
nonlinear wave solutions. Due to exponential rational forms, we obtained the exact solutions of the explored
nonlinear PDEs. We investigated the ERFM to the well-known equations such as KdV equation, KP
equation, mKdV equation, and KMN equation. Also, we analysed the dynamical behavior for the obtained
solutions in three dimensional graphics for appropriate values of the arbitrary parameters. The studied
models explains the nonlinear wave phenomena from different fields such as fluid dynamics, oceanography,
plasma physics, opitic fibers, and other sciences.
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