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Abstract

One of the most powerful techniques for modelling and solving complex problems in different fields that
are used in day-to-day life, is artificial neural networks (ANNs). Among them, the Multilayer Perceptron
(MLP), i.e., feedforward neural network, has been widely used and found to be very successful in learning
non-linear relationships in data. Mimicking neurons in the brain of a human, the MLPs process the data
input by the user in a series of multiple layers, including weighted connections, bias terms, and an activation
function, bit by bit, which then remaps the input to produce the output. The simplest MLP is made up of
an input layer, one or more than one(i.e., multiple) hidden layers, and an output layer. This neural network
model learns by modifying its internal parameters with the help of the backpropagation technique, which
forces the model to iteratively reduce the error that arises between the output obtained and the output that
was predicted. This learning involves optimization techniques such as gradient descent.
In my work, we consider the multilayer perceptron models applied to the context of nonlinear PDEs. In
particular, we investigate the construction of the Bilinear Neural Network Models (BNNMs) and show how
they can be utilized to obtain exact analytical solutions for strong nonlinear systems, e.g., the p-gBKP
equation. With a tensorized neural network architecture embedded in the Hirota bilinear framework, the
work demonstrates the capability of neural architectures for symbolic computing and mathematical modeling.
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1 Introduction

Imagine if we go to another state and the boards are marked with a different language. We don’t know how
to read that language, but we can use our phone to translate it into the language that can be understood
by us. This is one of the uses of the neural network [1]. This model is a fundamental component of machine
learning or deep learning, in which the algorithm simulates the functioning of the human brain. To put it
another way, neural networks analyze and identify patterns in data, just like the human brain does, and then
forecast the results for a fresh set of data [1]. Such a network consists of multiple(or one) layers(or layer)
of artificial neurons. The data enters through the first layer(commonly called the input layer), and the last
layer(i.e., the output layer) predicts the output; between the two layers, there are one or many layers(also
called hidden layers). Each input neuron in the first layer is transferred to the next layer with a channel,
and each channel consists of a numerical value known as a weight. Now, we get a product of the input
with its corresponding weight, and then each hidden layer receives the sum obtained. Every single neuron
has a numeric value called the bias, that is added to the value now and then passed through the activation
function, which determines if the values in the neurons in the last layer will be activated or not based on
the activation function, and the activated neuron is now passed to the other layer. In this manner, the data
is propagated to the function. This method is known as the forward propagation [1].
In the last layer, the neuron with the highest value determines the output, which is based on probability.
Now, the predicted output is compared to the actual output of the system to predict the error. Now, the
information travels backward through our network, and this method is known as back propagation [1]. The
input values are now adjusted, and this process is repeated iteratively until the model is trained to predict
the correct result. In recent years, neural networks have been useful in optimization and pattern recognition
using techniques like gradient descent or back propagation to predict the output based on the analyzed
data. Training of neural networks is like adjusting the weights by iteratively performing forward and back
propagation to obtain the desired output based on the given input, which can also be described as the
minimization of the error in predicting the output every iteration, and training the model based on the
dataset [2].

1.1 Multilayer Perceptron

The most useful technique of neural networks, by the back propagation algorithm, is the multilayer percep-
tron, which is the extension of the original perceptron with one layer. It was proposed by Rosenblatt [3],
in the year 1950 [2], being inspired by the biological neuron. As per him, perceptron models can only solve
linearly separable problems [4]. In 1969, Minsky and Papert proved that single-layer perceptrons cannot
solve even simple non-linear problems like XOR functions [5]. This led to the development of better models
and architectures in perceptrons. In the 1980s, various researchers, as discussed by Rumelhart and D.E. in
their paper, proposed that perceptrons can be exposed to multiple layers for better results using the back-
propagation algorithm, which led to the development of MLPs, which used various optimization techniques
like gradient descent [6]. The multilayer perceptron consists of one layer or more than one layers after the
input layer, and the weight is now processed with the value input, and it may pass through the first hidden
layer, which, on adding the bias, passes the numerical value to the second layer, and the process continues
the same as a neural network.
The key components of a multilayer perceptron are discussed below:
Input Layer: This layer consists of several input nodes that represent the features of the dataset. Each
input is typically a numeric value corresponding to a feature or attribute in a dataset.
Hidden Layer: Layers that are not directly connected to the environment are called the hidden layer.
The neural network may contain one or more hidden layers. These types of networks are very powerful
and extremely complicated. These hidden layers may change the condition all the time until they reach the
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Figure 1: In the figure above, we have an input layer (xi,1 corresponding to the weight w
(1)
1,1)

(w
(l)
j,k = weight of the neuron j in the layer l connecting to neuron k in the layer l + 1),

fj,k is the neuron k in the layer j, and y is the neuron in the output layer.

equilibrium state.
Activation Function: The Activation function is solely responsible for deciding if the value in the neurons
in the last hidden layer will go to the output layer or not. This function, most commonly used today, is the
logistic function, also known as the sigmoid function.
Threshold Function: We can say that the Threshold function is the activation function that is used to
analyze the output, which depends on the final value of the sum of inputs. It is also called a step function
or the Heaviside function.

2 Applications and Uses of Neural Networks

Neural Network, as of the time, has turned out to be one of the most powerful tools that is widely used by
scientists and researchers to find the exact solutions for different nonlinear partial differential equations [7].

Neural Networks are not just used in a theoretical or experimental way to find the exact solution,
but also in real-life day-to-day applications such as image classification, medical diagnosis, stock market
prediction, and natural language processing. Libraries like PyTorch or TensorFlow in Python are widely
used to build a feedforward neural network and prepare a model for industry applications [7]. Let us see one
real-life application of a neural network model using Python libraries to build and train a neural network to
recognize handwritten digits (0–9) from 8×8 grayscale images using a machine learning (Logistic) classifier.
The Python code for the implementation of this application and the result are as follows:
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Figure 2: Sigmoid Function
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In this application, We have used the BSD open-licensed dataset from scikit-learn (named as Digits Dataset
and can be obtained through the link: https://scikit-learn.org/stable/modules/generated/sklearn.
datasets.load_digits.html). We have used Logistic regression, which is a simple yet powerful classifier
for multiclass image recognition. The test accuracy after training the model is approximately 93 percent to
97 percent.

3 Types of Neural Network Models

Neural Networks have become pivotal in artificial intelligence research. Over the years, several architectures
have emerged, each tailored to specific data types, tasks, and learning constraints. Let’s discuss a few of
them for a better understanding of Neural Network models.

3.1 Feedforward Neural Networks (FNNs)

Feedforward is the earliest type of artificial neural network. In this type, the connection between the nodes
does not form a cycle. This type of neural network may have one or more sets of hidden layers, which are
connected to the input layer on one end and to the output layer on the other, just like the normal structure
of every neural network. The activation functions majorly used in this type of neural network are Sigmoid,
Tanh, or ReLU [8]. This type of neural network can be used in tasks such as Pattern Recognition, Function
Approximation, or Structured Data Classification [8].

3.2 Convolutional Neural Networks (CNNs)

CNNs are a type of neural network that is designed to automatically and adaptively learn spatial hierarchies
of features from visual data. Some of the notable layers of CNNs are Conv2D, MaxPooling2D, Flatten, and
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Dense [9]. Such neural networks focus mainly on tasks like Image Classification (ImageNet, MNIST), Object
Detection (YOLO, R-CNN), or Medical Imaging Diagnostics [9].

3.3 Recurrent Neural Networks (RNNs)

RNN models are best suited for sequential data due to their internal memory. It allows memory/data to
influence current outputs. Its architecture consists of feedback loops in hidden layers, shared parameters
across time steps, and input that can vary in sequence length in such types of neural networks. Such models
are mainly used in tasks like Time-Series forecasting, Language Modeling, and Audio Synthesis [10].

3.4 Long Short-term Memory Networks (LSTMs)

LSTMs are a very special kind of RNNs, which avoid vanishing gradient problems. The core units of the
architecture of such neural networks are the cell state, input gate, forget gate, and output gates. LSTMs
use Sigmoid + Tanh activation functions and can remember the information even longer than LSTMs.
Such neural networks are mainly used in tasks like Machine translation, Speech-to-text systems, or Stock
prediction [11].

3.5 Gated Recurrent Units (GRUs)

GRUs combine the forget and input gates into a single update gate, which simplifies LSTMs and leads to
faster training. The architecture of GRU consists of the update gate and reset gate. GRUs consist of fewer
parameters than LSTMs, but they give comparable performance. The main application fields of LSTMs are
text generation, chatbots, and anomaly detection in sequential data [12].

3.6 Autoencoders (AEs)

Autoencoders are unsupervised neural networks that learn to encode input into a compressed representation
and then decode it back. Its architecture consists of an encoder, a decoder, and a loss function. The fields
that majorly use Autoencoders are anomaly detection, image denoising, and feature extraction [13].

3.7 Generative Adversarial Networks (GANs)

GANs consist of two networks, a generator that creates data and a discriminator that evaluates data as
real or fake. The application fields of GAN are deepfake generation, data augmentation, and art and media
synthesis [14].

4 Bilinear Neural Networ Method (BNNM)

Neural networks had their origin at the introduction of the perceptron by Rosenblatt (1958) [4], which was
capable of solving linear separable problems. The restrictions of single-layer networks became apparent
with the publication of Minsky and Papert (1969) [5], who showed that they could not represent functions
such as XOR. This resulted in multilayer architectures, for which backpropagation had been introduced
by Rumelhart and Hinton [6]. The study on the neural networks for solving nonlinear PDEs witnessed a
major change by the introduction of BNNM, or the Bilinear Neural Network Method, in [8] by Zhang and
Bilige in 2019. They incorporated neural networks within the framework of the Hirota bilinear formalism
(HBF), where exact explicit solutions for some complex nonlinear equations, including the p-gBKP equation,
can be generated. Subsequent work by Liu et al. (2023–2024) [9] obtained a general class of solutions
comprising lump, breather, and interaction waves for a variety of (3+1)-dimensional nonlinear PDEs. Later
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developments also led to enhancements in the neural architecture, single and multi-layered models, and
combination with symbolic computation tools such as Maple, Mathematica, or MATLAB. These models
exhibit both theoretical stability and practical flexibility in deriving exact solutions with different initial and
function parameters.

4.1 General Description of BNNM

To solve the nonlinear partial differential equations (PDEs), a new method was proposed by Zhang et
al. [15]. In the nineteenth century, the study of nonlinear PDEs began in various fields that used the
bilinear transformation for approximation. For example, Ma et al. proposed the procedure for obtaining
the arbitrary function interaction solution and lump solution, The technique to obtain breather-type kink
soliton solutions was proposed by Sun et al. [17]. Let’s examine the billinear form and then tensor formula
for the bilinear neural network for p-gBKP equation [15]

σ13 = −1, σ23 = 1, σ33 = 1, σ43 = −1, σ53 = 1, σ63 = 1, σ73 = −1,

σ83 = 1, σ93 = 1

Hence,
D(3,r)D(3,t)f · f = 2fr,tf − 2frft,

D2
(3,s)f · f = 2fs,sf − 2f2s ,

D4
(3,r)f · f = 6f2r,r,

D3
(p,r)D(p,s)f · f = 6fr,rfr,s.

At p = 2:
D(2,t)D(2,r)f · f = 2frtf − 2frft,

D2
(2,s)f · f = 2fssf − 2f2s ,

D4
(2,r)f · f = 2frrrrf − 8frrrfr + 6f2rr,

D3
(p,r)D(p,s)f · f = 2frrrsf − 6frrsfr + 6frsfrr − 2fsfrrr.

i.e., we get the Hirota bilinear operator when p = 2 [15]. Now,

B(p-gBKPs)
(u) =

B(p-gBKPs)
(f)

f2
.

Therefore, the relationship between the reduced p-gBKP equation [15] and the generalized p-gBKP equation
is valid. Thus, if f solves the generalized p-gBKP equation, then the reduced p-gBKP equation will also be
solved [15]. In Figure 3, we can see the tensor model of the neural network, where the neurons of the input
layer are denoted by xi, fn,k is the neuron k in the hidden layer n, and y is the neuron of the output layer.
Let us say that we have k neurons in each hidden layer and a total of n hidden layers. Then, the tensor
formula of the nonlinear neural network is provided by in order to determine the precise analytical solutions
for the bilinear p-gBKP equation [15]:

y = w
(n)
k,y · F

(n)
k

(
γ
(n)
k

)
,
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Figure 3: Structure of the Neural Network Model for the tensor formula.

where w
(l)
j,k can be defined as the weight of the neuron k to fn,k, F

(n)
k is the generalized activation function

applied to a neuron fn,k such that, in the last layer F
(n)
k

(
γ
(n)
k

)
≥ 0, and γ

(n)
k is its pre-activation input, i.e.,

(weighted sum + bias) [15]:

γ
(l)
k = w

(l−1)
j,k · F (l−1)

j

(
γ
(l−1)
j

)
+ b

(l)
k , l = 1, 2, . . . , n

where b
(l)
k is the threshold, which acts as a constant here [15].

A complicated equation is produced by replacing the neural network-based expression with the bilinear
version of the nonlinear partial differential equations. This is made simpler by setting the coefficients of
each term in the resulting expression to zero, which results in an algebraic system of equations. The unknown
coefficients are then found by solving these equations with symbolic computation tools like Maple, MATLAB,
or Mathematica. To obtain precise analytical solutions for the system, the coefficients are found and then
reinserted into the neural network structure and the bilinear transformation framework. [15].

4.2 Applications of BNNM via Classical Test Functions

Bilinear Neural Network Model also covers many classical methods of the exact solution of partial differential
equations when specific functions are given to the single-layered network model [16].
(i) If the activation function of the first neuron F1(γ1) is chosen to be (γ21), F2(γ2) is given an input (γ22), and
F3(γ3) is given a constant value C, then this single-layered neural network is reduced to a lump solution’s
conventional test function, as shown in the figure below [16]:

y = 1 · γ21 + 1 · γ22 + 1 · C,

y = γ21 + γ22 + C.
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Figure 4

(ii) If F1(γ1) is chosen to be e−p1γ1 , F2(γ2) is cos(pγ2), and F3(γ3) is ep1γ1 in this model, then the
equation obtained is The breather-type kink soliton’s classical test function, as shown below [16].

Figure 5

y = 1 · e−p1γ1 + 1 · cos(pγ2) + 1 · ep1γ1

y = e−p1γ1 + cos(pγ2) + ep1γ1

Where both p and p1 are parameters.
(iii) If F1(γ1) is chosen to be 1, F2(γ2) is γ21 , and F3(γ3) is γ23 , in this model, then the equation obtained

is The traditional rational solution test function, as shown in the figure below [16].
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Figure 6

y = 1 · 1 + 1 · γ22 + 1 · γ23
y = 1 + γ22 + γ23

(iv) If F1(γ1) is chosen to be e−γ1 , F2(γ2) is tan(γ2), F3(γ3) is tan(γ3), and F4(γ4) is eγ1 , in this model,
then The resulting equation is the periodic wave equation’s classical test function, as shown in the figure
below [16].

Figure 7
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y = 1 · e−γ1 + 1 · tan(γ2) + 1 · tan(γ3) + 1 · eγ1

y = e−γ1 + tan(γ2) + tan(γ3) + eγ1

(v) If F1(γ1) is chosen to be e−γ1 , F2(γ2) is cos(γ2), F3(γ3) is sin(γ3), and F4(γ4) is eγ1 , in this model,
then the equation obtained is the wave equation’s classical test function, as shown in the figure below [16].

Figure 8

y = 1 · e−γ1 + 1 · cos(γ2) + 1 · sin(γ3) + 1 · eγ1

y = e−γ1 + cos(γ2) + sin(γ3) + eγ1

(vi) If F1(γ1) is chosen to be γ21 , F2(γ2) is γ22 , and F3(γ3) is eγ3 (or cosh(γ3)), in this single-layered model,
then the equation obtained is The trigonometric hyperbolic cosine function, often known as the traditional
test function of the interaction solution between the lump and exponential function, as shown in the figure
below [16].

2026 @ Transitus Publishing 131 Sakshi Katiyar



Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 120-135 (2026)

Figure 9

y = γ21 + γ22 + eγ3 or y = γ21 + γ22 + cosh(γ3)

(vii) If F1(γ1) is chosen to be γ21 , F2(γ2) is γ22 , and F3(γ3) is any arbitrary function in this single-layered
model, then The resulting equation represents the traditional test function of the lump-arbitrary function
interaction solution, as shown in the figure below [16].

Figure 10

y = γ21 + γ22 + F3(γ3)

(viii) If F1(γ1) is chosen to be γ21 , F2(γ2) is γ22 , and F3(γ3) is sech(p2, γ3) in this single-layered model,
then the equation obtained is The standard test function for the lump-hyperbolic secant function interaction
solution, as shown in the figure below [16].
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y = γ21 + γ22 + sech(p2, γ3)

Figure 11

(ix) If F1(γ1) is chosen to be cosh(−p1γ1), F2(γ2) is cos(pγ2), and F3(γ3) is cosh(p1γ1) in this single-layered
model, then the equation obtained is The Periodic lump-type solution’s classical test function, as shown in
the figure below [16].

y = e−p1γ1 + cos(pγ2) + ep1γ1

Figure 12

In all the above classical test functions, wj,k = 1 and l = 1 as it is a one-layer model. Now, test operations
can be created in bilinear methods too by giving specific weights, thresholds, and functions [16].

2026 @ Transitus Publishing 133 Sakshi Katiyar



Journal of Applied Mathematics and Symbolic Science
Transitus Publishing JAMSS, (01) 120-135 (2026)

Zhang and Bilige initially presented BNNM for nonlinear partial differential equations [15] in 2019. Then,
in the year 2020, Zhang, Bilige, and Chaolu [17] applied the BNNM to the p-gBKP equation, where they
constructed 19 exact function solutions. In 2023–2024, Yuanlin Liu et al. [16] used the BNNM with a
single layer to derive lump, breather, and interaction solutions for (3+1)-dimensional equations, emphasizing
flexibility via threshold choices. This was followed by Runfa Zhang et al., who proposed an improved BNNM
to showcase M-lump and lump–breather wave solutions in 2024. After this, Xia, Zhang, Luo, and many
other researchers worked on finding exact solutions by using specific single- or multi-layered BNNMs.

5 Conclusions

The present work is concerned with the design and use of multilayer perceptron-based neural networks specif-
ically for solving nonlinear partial differential equations, in the Bilinear Neural Network Model (BNNM)
framework. It began with understanding concepts in neural network design, forward and backward prop-
agation, and perceptron structure. We further explored their applicability to solve mathematical models
such as the p-gBKP equation in terms of tensor representation and bilinear Hirota operators. Encoding
various well-known exact solutions (such as lump, breather, rational, periodic, and interaction waveforms)
inside neural networks and adjusting values of activation and threshold functions, weights, and biases, it is
possible to obtain many known exact solutions. This indicates that neural networks are not just compu-
tational machines but symbolic function approximators for mathematical systems. The results support the
conclusion that BNNMs are a powerful and flexible tool for solving nonlinear PDEs and have great prospects
in symbolic computation and scientific model research.
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